Versatility of a Dilute Acid/Butanol Pretreatment Investigated on Various Lignocellulosic Biomasses to Produce Lignin, Monosaccharides and Cellulose in Distinct Phases
[en] An organosolv pretreatment consisting of an H2SO4/n-butanol biphasic system was designed to separate lignocellulosic biomass in three distinct phases: a cellulose-rich solid residue, hydrolyzed hemicelluloses in an aqueous phase, and lignin dissolved in a hydrophobic butanol phase. In the present study, the versatility of the process was investigated on materials of various compositions and origins: sugar cane bagasse, tall fescue, sugar beet pulp, eucalyptus, beech, and Japanese cedar. The efficiency was assessed in terms of lignin removal from the raw biomass and purity of the recovered cellulosic residue using the Klason method as well as improvement on enzymatic saccharification (increased from 18.7% to 96%). Results were correlated to biomass types and composition, and in comparison to an organic solvent-free method (dilute acid). Up to 81% cellulose purity corresponding to 87% lignin removal was achieved. Results were corroborated by scanning electron microscopy showing an absence of lignin deposition. Lignin molecular weight (GPC), structure (2D-HSQC NMR), recovery, and purity (up to 96%) have been investigated. Moreover, organic compounds responsible for fermentation inhibition were partially solubilized in the butanol, decreasing the concentration in the aqueous phase. Efficient butanol pretreatment applied on hardwood, bagasse, and herbaceous matter is promising. However, Japanese cedar (softwood) was too recalcitrant for this process.
Disciplines :
Chemistry
Author, co-author :
Schmetz, Quentin ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > SMARTECH
Teramura, Hiroshi; Kobe University
Morita, Kenta; Kobe University
Oshima, Tomoko; Kobe University
Richel, Aurore ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > SMARTECH
Ogino, Chiaki; Kobe University
Kondo, Akihiko; Kobe University
Language :
English
Title :
Versatility of a Dilute Acid/Butanol Pretreatment Investigated on Various Lignocellulosic Biomasses to Produce Lignin, Monosaccharides and Cellulose in Distinct Phases
Publication date :
June 2019
Journal title :
ACS Sustainable Chemistry and Engineering
eISSN :
2168-0485
Publisher :
American Chemical Society, Washington, United States - District of Columbia
Langeveld, H.; Sanders, J.; Meeusen, M. The Biobased Economy: Biofuels, Materials and Chemicals in the Post-Oil Era; Earthscan Routledge: Abingdon, U.K., 2012.
Kamm, B. Biorefineries-their scenarios and challenges. Pure Appl. Chem. 2014, 86, 821-831, 10.1515/pac-2013-1035
Lucia, L. A. Lignocellulosic biomass; a potential feedstock to replace petroleum. Bioresources 2008, 3, 981-982
Octave, S.; Thomas, D. Biorefinery: Toward an industrial metabolism. Biochimie 2009, 91, 659-664, 10.1016/j.biochi.2009.03.015
Ben Fradj, N.; Jayet, P. A.; Aghajanzadeh-Darzi, P. Competition between food, feed, and (bio)fuel: A supply-side model based assessment at the European scale. Land Use Policy 2016, 52, 195-205, 10.1016/j.landusepol.2015.12.027
Schmetz, Q.; Maniet, G.; Jacquet, N.; Teramura, H.; Ogino, C.; Kondo, A.; Richel, A. Comprehension of an organosolv process for lignin extraction on Festuca arundinacea and monitoring of the cellulose degradation. Ind. Crops Prod. 2016, 94, 308-317, 10.1016/j.indcrop.2016.09.003
Kumar, P.; Barrett, D.; Delwiche, M.; Stroeve, P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind. Eng. Chem. Res. 2009, 48, 3713-3729, 10.1021/ie801542g
Mosier, N.; Wyman, C.; Dale, B.; Elander, R.; Lee, Y. Y.; Holtzapple, M.; Ladisch, M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 2005, 96, 673-686, 10.1016/j.biortech.2004.06.025
Sarkar, N.; Ghosh, S. K.; Bannerjee, S.; Aikat, K. Bioethanol production from agricultural wastes: An overview. Renew. Energy 2012, 37, 19-27, 10.1016/j.renene.2011.06.045
Zhao, X.; Zhang, L.; Liu, D. Biomass recalcitrance. Part I: the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels, Bioprod. Biorefin. 2012, 6, 465-482, 10.1002/bbb.1331
Schutyser, W.; Renders, T.; Van den Bosch, S.; Koelewijn, S.-F.; Beckham, G. T.; Sels, B. F. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem. Soc. Rev. 2018, 47, 852-908, 10.1039/C7CS00566K
Zimmermann, C. J.; Bollar, N. V.; Wettstein, S. G. Liquid phase conversion of lignocellulosic biomass using biphasic systems. Biomass Bioenergy 2018, 118, 163-171, 10.1016/j.biombioe.2018.08.009
Zhu, J. Y.; Pan, X.; Zalesny, R. S. Pretreatment of woody biomass for biofuel production: Energy efficiency, technologies, and recalcitrance. Appl. Microbiol. Biotechnol. 2010, 87, 847-857, 10.1007/s00253-010-2654-8
Maniet, G.; Schmetz, Q.; Jacquet, N.; Temmerman, M.; Gofflot, S.; Richel, A. Effect of steam explosion treatment on chemical composition andcharacteristic of organosolv fescue lignin. Ind. Crops Prod. 2017, 99, 79-85, 10.1016/j.indcrop.2017.01.015
Teramura, H.; Sasaki, K.; Oshima, T.; Matsuda, F.; Okamoto, M.; Shirai, T.; Kawaguchi, H.; Ogino, C.; Hirano, K.; Sazuka, T.; Kitano, H.; Kikuchi, J.; Kondo, A. Organosolv pretreatment of sorghum bagasse using a low concentration of hydrophobic solvents such as 1-butanol or 1-pentanol. Biotechnol. Biofuels. 2016, 9, 27, 10.1186/s13068-016-0427-z
Renders, T.; Cooreman, E.; Van den Bosch, S.; Schutyser, W.; Koelewijn, S.-F.; Vangeel, T.; Deneyer, A.; Van den Bossche, G.; Courtin, C. M.; Sels, B. F. Catalytic lignocellulose biorefining in n-butanol/water: a one-pot approach toward phenolics, polyols, and cellulose. Green Chem. 2018, 20, 4607-4619, 10.1039/C8GC01031E
Ezeji, T. C.; Qureshi, N.; Blaschek, H. P. Bioproduction of butanol from biomass: from genes to bioreactors. Curr. Opin. Biotechnol. 2007, 18, 220-227, 10.1016/j.copbio.2007.04.002
Niemistö, J.; Saavalainen, P.; Pongrácz, E.; Keiski, R. L. Biobutanol as a potential sustainable biofuel-Assessment of lignocellulosic and waste-based feedstocks. J. S. D. E. W. E. S. 2013, 1, 58-77, 10.13044/j.sdewes.2013.01.0005
Nielsen, D. R.; Leonard, E.; Yoon, S. H.; Tseng, H. C.; Yuan, C.; Prather, K. L. J. Engineering alternative butanol production platforms in heterologous bacteria. Metab. Eng. 2009, 11, 262-273, 10.1016/j.ymben.2009.05.003
Himmel, M.; Ding, S. Y.; Johnson, D. K.; Adney, W. S.; Nimlos, M. R.; Brady, J. W.; Foust, T. D. Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. Science 2007, 315 (5813), 804-807, 10.1126/science.1137016
Studer, M. H.; DeMartini, J. D.; Davis, M. F.; Sykes, R. W.; Davison, B.; Keller, M.; Tuskan, G. A.; Wyman, C. E. Lignin content in natural Populus variants affects sugar release. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (15), 6300-6305, 10.1073/pnas.1009252108
Matsuda, F.; Yamasaki, M.; Hasunuma, T.; Ogino, C.; Kondo, A. Variation in biomass properties among rice diverse cultivars. Biosci., Biotechnol., Biochem. 2011, 75, 1603-1608, 10.1271/bbb.110082
Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP); issue date, July 2005; NREL: Golden, CO, 2008; pp 1-5.
Sluiter, A.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Extractives in Biomass: Laboratory Analytical Procedure (LAP); issue date, 2005; NREL: Golden, CO, 2008; pp 1-9.
Tkachuk, R. Nitrogen to protein conversion factors for cereals and oilseed meals. Cereal Chem. 1969, 46, 419-424
Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D.; Crocker, D. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP); issue, 2008; revision, 2012; NREL: Golden, CO, 2012; pp 1-15.
TAPPI UM 250. Acid-soluble lignin in wood and pulp. In TAPPI Useful Methods; Tappi: Atlanta, GA, 1991.
Sakamoto, T.; Hasunuma, T.; Hori, Y.; Yamada, R.; Kondo, A. Direct ethanol production from hemicellulosic materials of rice straw by use of an engineered yeast strain codisplaying three types of hemicellulolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. J. Biotechnol. 2012, 158, 203-210, 10.1016/j.jbiotec.2011.06.025
Sasaki, K.; Tsuge, Y.; Sasaki, D.; Teramura, H.; Inokuma, K.; Hasunuma, T.; Ogino, C.; Kondo, A. Mechanical milling and membrane separation for increased ethanol production during simultaneous saccharification and co-fermentation of rice straw by xylose-fermenting Saccharomyces cerevisiae. Bioresour. Technol. 2015, 185, 263-268, 10.1016/j.biortech.2015.02.117
Neiva, D.; Fernandes, L.; Araújo, S.; Lourenço, A.; Gominho, J.; Simões, R.; Pereira, H. Chemical composition and kraft pulping potential of 12 eucalypt species. Ind. Crops Prod. 2015, 66, 89-95, 10.1016/j.indcrop.2014.12.016
Szczerbowski, D.; Pitarelo, A. P.; Zandona Filho, A.; Ramos, L. P. Sugarcane biomass for biorefineries: Comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw. Carbohyd. Polym. 2014, 114, 95-101, 10.1016/j.carbpol.2014.07.052
Simon, M.; Brostaux, Y.; Vanderghem, C.; Jourez, B.; Paquot, M.; Richel, A. Optimization of a formic/acetic acid delignification treatment on beech wood and its influence on the structural characteristics of the extracted lignins. J. Chem. Technol. Biotechnol. 2014, 89, 128-136, 10.1002/jctb.4123
Sagehashi, M.; Miyasaka, N.; Shishido, H.; Sakoda, A. Superheated steam pyrolysis of biomass elemental components and Sugi (Japanese cedar) for fuels and chemicals. Bioresour. Technol. 2006, 97, 1272-1283, 10.1016/j.biortech.2005.06.002
Bellido, C.; Infante, C.; Coca, M.; González-Benito, G.; Lucas, S.; García-Cubero, M. T. Efficient acetone-butanol-ethanol production by Clostridium beijerinckii from sugar beet pulp. Bioresour. Technol. 2015, 190, 332-338, 10.1016/j.biortech.2015.04.082
Njoku, S. I.; Ahring, B. K.; Uellendahl, H. Pretreatment as the crucial step for a cellulosic ethanol biorefinery: Testing the efficiency of wet explosion on different types of biomass. Bioresour. Technol. 2012, 124, 105-110, 10.1016/j.biortech.2012.08.030
Hu, F.; Jung, S.; Ragauskas, A. Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour. Technol. 2012, 117, 7-12, 10.1016/j.biortech.2012.04.037
Selig, M. J.; Viamajala, S.; Decker, S. R.; Tucker, M. P.; Himmel, M. E.; Vinzant, T. B. Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol. Prog. 2007, 23, 1333-1339, 10.1021/bp0702018
Kärcher, M. A.; Iqbal, Y.; Lewandowski, I.; Senn, T. Efficiency of single stage-and two stage pretreatment in biomass with different lignin content. Bioresour. Technol. 2016, 211, 787-791, 10.1016/j.biortech.2016.04.017
Norman, A.; Jenkins, S. The determination of lignin. II. Errors introduced by the presence of proteins. Biochem. J. 1934, 28, 2160-2168, 10.1042/bj0282160
Kawamata, Y.; Yoshikawa, T.; Nakasaka, Y.; Koyama, Y.; Fumoto, E.; Sato, S.; Tago, T.; Masuda, T. Organosolv Treatment Using 1-Butanol and Degradation of Extracted Lignin Fractions into Phenolic Compounds over Iron Oxide Catalyst. J. Jpn. Pet. Inst. 2019, 62, 37-44, 10.1627/jpi.62.37
del Rio, J. C.; Prinsen, P.; Rencoret, J.; Nieto, L.; Jimenez-Barbero, J.; Ralph, J.; Martinez, A. T.; Gutierrez, A. Structural characterization of the lignin in the cortex and pith of elephant grass (Pennisetum purpureum) stems. J. Agric. Food Chem. 2012, 60, 3619-3634, 10.1021/jf300099g
del Rio, J. C.; Lino, A. G.; Colodette, J. L.; Lima, C. F.; Gutierrez, A.; Martinez, A. T.; Lu, F.; Ralph, J.; Rencoret, J. Differences in the chemical structure of the lignins from sugarcane bagasse and straw. Biomass Bioenerg. 2015, 81, 322-338, 10.1016/j.biombioe.2015.07.006
Fernández-Costas, C.; Gouveia, S.; Sanromán, M. A.; Moldes, D. Structural characterization of Kraft lignins from different spent cooking liquors by 1D and 2D Nuclear Magnetic Resonance spectroscopy. Biomass Bioenergy 2014, 63, 156-166, 10.1016/j.biombioe.2014.02.020
Kim, H.; Ralph, J. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO d6/pyridine-d5. Org. Biomol. Chem. 2010, 8, 576-591, 10.1039/B916070A
Samuel, R.; Foston, M.; Jiang, N.; Allison, L.; Ragauskas, A. J. Structural changes in switchgrass lignin and hemicelluloses during pretreatments by NMR analysis. Polym. Degrad. Stab. 2011, 96, 2002-2009, 10.1016/j.polymdegradstab.2011.08.015
Villaverde, J. J.; Li, J.; Ek, M.; Ligero, P.; De Vega, A. Native lignin structure of Miscanthus x giganteus and its changes during acetic and formic acid fractionation. J. Agric. Food Chem. 2009, 57, 6262-6270, 10.1021/jf900483t
Vanderghem, C.; Richel, A.; Jacquet, N.; Blecker, C.; Paquot, M. Impact of formic/acetic acid and ammonia pre-treatments on chemical structure and physic-chemical properties of Miscanthus x giganteus lignins. Polym. Degrad. Stab. 2011, 96, 1761-1170, 10.1016/j.polymdegradstab.2011.07.022
Wen, J.-L.; Xue, B.-L.; Xu, F.; Sun, R.-C.; Pinkert, A. Unmasking the structural features and property of lignin from bamboo. Ind. Crops Prod. 2013, 42, 332-343, 10.1016/j.indcrop.2012.05.041
Yuan, T.-Q.; Sun, S.-N.; Xu, F.; Sun, R.-C. Characterization of lignin structures and lignin-carbohydrate complex (LCC) linkages by quantitative 13C and 2D HSQC NMR spectroscopy. J. Agric. Food Chem. 2011, 59, 10604-10614, 10.1021/jf2031549
Zhang, Y.; Wu, J.-Q.; Li, H.; Yuan, T.-Q.; Wang, Y.-Y.; Sun, R.-C. Heat Treatment of Industrial Alkaline Lignin and its Potential Application as an Adhesive for Green-Wood-Lignin Composites. ACS Sustainable Chem. Eng. 2017, 5, 7269-7277, 10.1021/acssuschemeng.7b01485
Leijdekkers, A.; Bink, J.; Geutjes, S.; Schols, H.; Gruppen, H. Enzymatic saccharification of sugar beet pulp for the production of galacturonic acid and arabinose; a study on the impact of the formation of recalcitrant oligosaccharides. Bioresour. Technol. 2013, 128, 518-525, 10.1016/j.biortech.2012.10.126
Papa, G.; Varanasi, P.; Sun, L.; Cheng, G.; Stavila, V.; Holmes, B.; Simmons, B. A.; Adani, F.; Singh, S. Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants. Bioresour. Technol. 2012, 117, 352-359, 10.1016/j.biortech.2012.04.065
Li, X.; Li, M.; Pu, Y.; Ragauskas, A.; Klett, A.; Thies, M.; Zheng, Y. Inhibitory effects of lignin on enzymatic hydrolysis: The role of lignin chemistry and molecular weight. Renewable Energy 2018, 123, 664-674, 10.1016/j.renene.2018.02.079
Amiri, H.; Karimi, K. Efficient Dilute-Acid Hydrolysis of Cellulose Using Solvent Pretreatment. Ind. Eng. Chem. Res. 2013, 52, 11494-11501, 10.1021/ie4017368