Agrawal, A., Johns, R.W., Milliron, D.J., Control of localized surface plasmon resonances in metal oxide nanocrystals. Annu. Rev. Mater. Res. 47 (2017), 1–31.
Kriegel, I., Scotognella, F., Manna, L., Plasmonic doped semiconductor nanocrystals: properties, fabrication, applications and perspectives. Phys. Rep. 674 (2017), 1–52.
Jiang, N., Zhuo, X., Wang, J., Active plasmonics: principles, structures, and applications. Chem. Rev. 118 (2018), 3054–3099.
Faucheaux, J.A., Stanton, A.L., Jain, P.K., Plasmon resonances of semiconductor nanocrystals: physical principles and new opportunities. J. Phys. Chem. Lett. 5 (2014), 976–985.
Crockett, B.M., Jansons, A.W., Koskela, K.M., Johnson, D.W., Hutchison, J.E., Radial dopant placement for tuning plasmonic properties in metal oxide nanocrystals. ACS Nano 11 (2017), 7719–7728.
Pradhan, N., Adhikari, S.D., Nag, A., Sarma, D.D., Luminescence, plasmonic, and magnetic properties of doped semiconductor nanocrystals. Angew. Chem. Int. Ed. 56 (2017), 7038–7054.
Hartstein, K.H., Schimpf, A.M., Salvador, M., Gamelin, D.R., Cyclotron splittings in the plasmon resonances of electronically doped semiconductor nanocrystals probed by magnetic circular dichroism spectroscopy. J. Phys. Chem. Lett. 8 (2017), 1831–1836.
Fang, H., Hegde, M., Yin, P., Radovanovic, P.V., Tuning plasmon resonance of In2O3 nanocrystals throughout the mid-infrared region by competition between electron activation and trapping. Chem. Mater. 29 (2017), 4970–4979.
Yu, N., Peng, C., Wang, Z., Liu, Z., Zhu, B., Yi, Z., Zhu, M., Liu, X., Chen, Z., Dopant-dependent crystallization and photothermal effect of Sb-doped SnO2 nanoparticles as stable theranostic nanoagents for tumor ablation. Nanoscale 10 (2018), 2542–2554.
zum Felde, U., Haase, M., Weller, H., Electrochromism of highly doped nanocrystalline SnO2:Sb. J. Phys. Chem. B 104 (2000), 9388–9395.
Garcia, G., Buonsanti, R., Runnerstrom, E.L., Mendelsberg, R.J., Llordes, A., Anders, A., Richardson, T.J., Milliron, D.J., Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett. 11 (2011), 4415–4420.
Garcia, G., Buonsanti, R., Llordes, A., Runnerstrom, E.L., Bergerud, A., Milliron, D.J., Near-infrared spectrally selective plasmonic electrochromic thin films. Adv. Opt. Mater. 1 (2013), 215–220.
Zandi, O., Agrawal, A., Shearer, A.B., Reimnitz, L.C., Dahlman, C.J., Staller, C.M., Milliron, D.J., Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals. Nat. Mater. 17 (2018), 710–717.
Pattathil, P., Giannuzzi, R., Manca, M., Self-powered NIR-selective dynamic windows based on broad tuning of the localized surface plasmon resonance in mesoporous ITO electrodes. Nano Energy 30 (2016), 242–251.
Manthiram, K., Alivisatos, A.P., Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J. Am. Chem. Soc. 134 (2012), 3995–3998.
Heo, S., Kim, J., Ong, G.K., Milliron, D.J., Template-free mesoporous electrochromic films on flexible substrates from tungsten oxide nanorods. Nano Lett. 17 (2017), 5756–5761.
Pattathil, P., Scarfiello, R., Giannuzzi, R., Veramonti, G., Sibillano, T., Qualtieri, A., Giannini, C., Cozzoli, P.D., Manca, M., Near-infrared selective dynamic windows controlled by charge transfer impedance at the counter electrode. Nanoscale 8 (2016), 20056–20065.
Mattox, T.M., Bergerud, A., Agrawal, A., Milliron, D.J., Influence of shape on the surface plasmon resonance of tungsten bronze nanocrystals. Chem. Mater. 26 (2014), 1779–1784.
Tegg, L., Cuskelly, D., Keast, V.J., Plasmon responses in the sodium tungsten bronzes. Plasmonics 13 (2017), 437–444.
Runnerstrom, E.L., Llordes, A., Lounis, S.D., Milliron, D.J., Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals. Chem. Commun. 50 (2014), 10555–10572.
Wang, Y., Runnerstrom, E.L., Milliron, D.J., Switchable materials for smart windows. Ann. Rev. Chem. Biomol. Eng. 7 (2016), 283–304.
Niklasson, G.A., Lansåker, P.C., Li, S.-Y., Granqvist, C.G., Plasmonic thin films for application in improved chromogenic windows. J. Phys. Conf. Ser., 682, 2016, 012003.
Dinh, C.T., Nguyen, T.D., Kleitz, F., Do, T.O., Shape-controlled synthesis of metal oxide nanocrystals. Lui, R.-S., (eds.) Controlled Nanofabrications: Advances and Applications, 2012, Pan Stanford Publishing Pte. Ltd., Stanford, 327–367.
Sutka, A., Timsuk, M., Döbelin, N., Pärna, R., Visnapuu, M., Joost, U., Käämbre, T., Kisand, V., Saal, K., Knite, M., A straightforward and “green” solvothermal synthesis of Al doped zinc oxide plasmonic nanocrystals and piezoresistive elastomer nanocomposite. RSC Adv. 5 (2015), 63846–63852.
Huang, X.-J., Bao, J., Han, Y., Cui, C.-W., Wang, J.-X., Zeng, X.-F., Chen, J.-F., Controllable synthesis and evolution mechanism of tungsten bronze nanocrystals with excellent optical performance for energy-saving glass. J. Mater. Chem. C 6 (2018), 7783–7789.
Lou, Z., Gu, Q., Xu, L., Liao, Y., Xue, C., Surfactant-free synthesis of plasmonic tungsten oxide nanowires with visible-light-enhanced hydrogen generation from ammonia borane. Chem. Asian J. 10 (2015), 1291–1294.
Eyassu, T., Hsaio, T.-J., Lin, C.-T., Facile solvothermal synthesis of NIR absorbing CsxWO3 nanorods by benzyl alcohol route. Mater. Res. Express, 2, 2015, 015016.
Ba, J., Fattakhova Rohlfing, D., Feldhoff, A., Brezesinski, T., Djerdj, I., Wark, M., Niederberger, M., Nonaqueous synthesis of uniform indium tin oxide nanocrystals and their electrical conductivity in dependence of the tin oxide concentration. Chem. Mater. 18 (2006), 2848–2854.
Ba, J., Feldhoff, A., Fattakhova Rohlfing, D., Wark, M., Antonietti, M., Niederberger, M., Crystallization of indium tin oxide nanoparticles: from cooperative behavior to individuality. Small 3 (2007), 310–317.
De Roo, J., Van den Broeck, F., De Keukeleere, K., Martins, J.C., Van Driessche, I., Hens, Z., Unravelling the surface chemistry of metal oxide nanocrystals, the role of acids and bases. J. Am. Chem. Soc. 136 (2014), 9650–9657.
Qamar, M., Adam, A., Azad, A.M., Kim, Y.W., Benzyl alcohol-mediated versatile method to fabricate nonstoichiometric metal oxide nanostructures. ACS Appl. Mater. Interfaces 9 (2017), 40573–40579.
Deshmukh, R., Niederberger, M., Mechanistic aspects in the formation, growth and surface functionalization of metal oxide nanoparticles in organic solvents. Chemistry 23 (2017), 8542–8570.
Li, C.-P., Wolden, C.A., Dillon, A.C., Tenent, R.C., Electrochromic films produced by ultrasonic spray deposition of tungsten oxide nanoparticles. Sol. Energy Mater. Sol. Cells 99 (2012), 50–55.
Mwakikunga, B.W., Progress in ultrasonic spray pyrolysis for condensed matter sciences developed from ultrasonic nebulization theories since michael faraday. Crit. Rev. Solid State 39 (2013), 46–80.
Henrist, C., Toussaint, C., de Vroede, J., Chatzikyriakou, D., Dewalque, J., Colson, P., Maho, A., Cloots, R., Surfactant-assisted ultrasonic spray pyrolysis of hematite mesoporous thin films. Microporous Mesoporous Mater. 221 (2016), 182–186.
Chatzikyriakou, D., Maho, A., Cloots, R., Henrist, C., Ultrasonic spray pyrolysis as a processing route for templated electrochromic tungsten oxide films. Microporous Mesoporous Mater. 240 (2017), 31–38.
Peña, F., Ostasevicius, T., Fauske, V.T., Burdet, P., Prestat, E., Jokubauskas, P., Nord, M., Sarahan, M., MacArthur, K.E., Johnstone, D.N., Taillon, J., Caron, J., Migunov, V., Furnival, T., Eljarrat, A., Mazzucco, S., Aarholt, T., Walls, M., Slater, T., Winkler, F., Martineau, B., Donval, G., McLeod, R., Hoglund, E.R., Alxneit, I., Hjorth, I., Henninen, T., Zagonel, L.F., Garmannslund, A., hyperspy/hyperspy: v1.4.2 (Version v1.4.2). 2019, June 19 Zenodo http://doi.org/10.5281/zenodo.3249885.
Kanehara, M., Koike, H., Yoshinaga, T., Teranishi, T., Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J. Am. Chem. Soc. 131 (2009), 17736–17737.
Lounis, S.D., Runnerstrom, E.L., Bergerud, A., Nordlund, D., Milliron, D.J., Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals. J. Am. Chem. Soc. 136 (2014), 7110–7116.
Nelayah, J., Kociak, M., Stéphan, O., García de Abajo, F.J., Tencé, M., Henrard, L., Taverna, D., Pastoriza-Santos, I., Liz-Marzán, L.M., Colliex, C., Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3 (2007), 348–353.
Losquin, A., Zagonel, L.F., Myroshnychenko, V., Rodriguez-Gonzalez, B., Tence, M., Scarabelli, L., Forstner, J., Liz-Marzan, L.M., Garcia de Abajo, F.J., Stephan, O., Kociak, M., Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements. Nano Lett. 15 (2015), 1229–1237.
Agrawal, A., Singh, A., Yazdi, S., Singh, A., Ong, G.K., Bustillo, K., Johns, R.W., Ringe, E., Milliron, D.J., Resonant coupling between molecular vibrations and localized surface plasmon resonance of faceted metal oxide nanocrystals. Nano Lett. 17 (2017), 2611–2620.
Echenique, P.M., Howie, A., Wheatley, D.J., Excitation of dielectric spheres by external electron beams. Philos. Mag. B 56 (1987), 335–349.
Chen, Z., Zhuo, Y., Tu, W., Li, Z., Ma, X., Pei, Y., Wang, G., High mobility indium tin oxide thin film and its application at infrared wavelengths: model and experiment. Optic Express 26 (2018), 22123–22134.