[en] A coalescence model in the context of the ReDrop concept (Representative Drops) is proposed to design technical equipment for separating liquid-liquid dispersions in settlers or extraction columns. A fundamental study of drop interactions has been performed to obtain the complete picture of coalescence. The model proposed accounts for collision frequency of the drops, bouncing probability, and coalescence probability, for which the film-drainage approach is applied. The model proposed allows to consider the appropriate formulation for different types of equipment. Especially noteworthy is that the coalescence probability fundamentally differs from the expression of Coulaloglou and Tavlarides, which is frequently used, but which shows inconsistencies at fundamental level.
Research Center/Unit :
Department of Chemical Engineering, PEPs - Products, Environment, and Processes
Disciplines :
Chemical engineering
Author, co-author :
Leleu, David ; Université de Liège - ULiège > Department of Chemical Engineering > PEPs - Products, Environment, and Processes
Pfennig, Andreas ; Université de Liège - ULiège > Department of Chemical Engineering > PEPs - Products, Environment, and Processes
Language :
English
Title :
Coalescence Modelling for Design of Technical Equipment
Federal Ministry for Economic Affairs and Energy of Germany, project number: 01168585/1, in the context of the ERICAA project F.R.S.-FNRS - Fonds de la Recherche Scientifique
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
N. Kopriwa, A. Pfennig, Solvent Extr. Ion Exch. 2016, 34 (7), 622–642. DOI: https://doi.org/10.1080/07366299.2016.1244392
Y. Liao, D. Lucas, Chem. Eng. Sci. 2010, 65 (10), 2851–286. DOI: https://doi.org/10.1016/j.ces.2010.02.020
M. J. Prince, H. W. Blanch, AIChE J. 1990, 36 (10), 1485–1499. DOI: https://doi.org/10.1002/aic.690361004
T. Boublík, J. Chem. Phys. 1970, 53, 471–472. DOI: https://doi.org/10.1063/1.1673824
G. A. Mansoori, N. H. Carnahan, K. E. Starling, T. W. Jr. Leland, J. Chem. Phys. 1971, 54 (4), 1523–1525. DOI: https://doi.org/10.1063/1.1675048
W. J. Howarth, Chem. Eng. Sci. 1964, 19 (1), 33–38. DOI: https://doi.org/10.1016/0009-2509(64)85003-X
F. Lehr, D. Mewes, Chem. Eng. Sci. 2001, 56 (3), 1159–1166. DOI: https://doi.org/10.1016/S0009-2509(00)00335-3
J. Kamp, M. Kraume, Chem. Eng. Sci. 2016, 156, 162–177. DOI: https://doi.org/10.1016/j.ces.2016.08.028
C. A. Coulaloglou, L. L. Tavlarides, Chem. Eng. Sci. 1977, 32 (11), 1289–1297. DOI: https://doi.org/10.1016/0009-2509(77)85023-9
A. K. Chesters, Chem. Eng. Res. Des. 1991, 69 (A4), 259–270.
M. Henschke, L. H. Schlieper, A. Pfennig, Chem. Eng. J. 2002, 85 (2–3), 369–378. DOI: https://doi.org/10.1016/S1385-8947(01)00251-0
N. Kopriwa, Quantitative Beschreibung von Koaleszenzvorgängen in Extraktionskolonnen, Ph.D. Thesis, RWTH Aachen University 2013.
A. Pfennig, A. Schwerin, Ind. Eng. Chem. Res. 1998, 37 (8), 3180–3188. DOI: https://doi.org/10.1021/ie970866m
G. B. Webber, A. E. Scott, G. W. Stevens, F. Greiser, R. R. Dagastine, D. Y. C. Chan, Soft Matter 2008, 4, 1270–1278. DOI: https://doi.org/10.1039/b717303b
J. Kamp, M. Kraume, Chem. Eng. Sci. 2015, 126, 132–142. DOI: https://doi.org/10.1016/j.ces.2014.11.045
D. Y. C. Chan, E. Klaseboer, R. Manica, Soft Matter 2011, 7, 2235–2264. DOI: https://doi.org/10.1039/C0SM00812E
G. D. M. MacKay, S. G. Mason, Can. J. Chem. Eng. 1963, 41 (5), 203–212. DOI: https://doi.org/10.1002/cjce.5450410504
Y. A. Buevich, E. K. Lipkina, Colloid. J. USSR (in English) 1978, 40 (2), 167–171.
M. Henschke, Dimensionierung liegender Flüssig-flüssig-Abscheider anhand diskontinuierlicher Absetzversuche, Ph.D. Thesis, RWTH Aachen University 1995.
R. M. MacAvoy, R. C. Kintner, J. Colloid Sci. 1965, 20 (2), 188–190. DOI: https://doi.org/10.1016/0095-8522(65)90009-7
J. Ayesteràn, N. Kopriwa, F. Buchbender, M. Kalem, A. Pfennig, Chem. Ing. Tech. 2015, 38, 1894–1900. DOI: https://doi.org/10.1002/ceat.201500097
Particle Technology and Separation Processes, 5th ed. (Eds.: J. F. Richardson, J. H. Harker, J. R. Backhurst), Coulson and Richardson's Chemical Engineering, Vol. 2, Butterworth Heinemann, Oxford 2002.
E. Corwin, M. Clusel, A. Siemens, J. Brujic, Nature 2009, 460, 611–615. DOI: https://doi.org/10.1038/nature08158
N. Kopriwa, F. Buchbender, J. Ayesterán, M. Kalem, A. Pfennig, Solvent Extr. Ion Exch. 2012, 30 (7), 683–723. DOI: https://doi.org/10.1080/07366299.2012.700598
J. W. Kim, W. K. Lee, J. Chem. Eng. Jpn. 1987, 20 (5), 448–453. DOI: https://doi.org/10.1252/jcej.20.448
E. Cockbain, T. McRoberts, J. Colloid Sci. 1953, 8 (4), 440–451. DOI: https://doi.org/10.1016/0095-8522(53)90028-2
T. Gillespie, E. K. Rideal, Trans. Faraday Soc. 1956, 52, 173–183. DOI: https://doi.org/10.1039/tf9565200173
G. Z. Yu, Z. S. Mao, Chem. Eng. Technol. 2004, 27 (4), 407–413. DOI: https://doi.org/10.1002/ceat.200401884
M. Henschke, Auslegung pulsierter Siebboden-Extraktionskolonnen, Habilitation, RWTH Aachen University 2003.
N. F. Carnahan, K. E. Starling, J. Chem. Phys. 1969, 51 (2), 635–636. DOI: https://doi.org/10.1063/1.1672048
S. Sajjadi, N. Zerfa, B. W. Brooks, Chem. Eng. Sci. 2001, 57, 663–675. DOI: https://doi.org/10.1016/S0009-2509(01)00415-8
S. Hartland, D. K. Vohra, Chem. Ing. Tech. 1978, 50 (9), 673–682. DOI: https://doi.org/10.1002/cite.330500906
J. F. Richardson, W. N. Zaki, Trans. Inst. Chem. Eng. 1954, 8, 65–73. DOI: https://doi.org/10.1016/0009-2509(54)85015-9
F. Buchbender, Single-Drop-Based Modelling of Drop Residence Times in Kuhni Columns, Ph.D. Thesis, RWTH Aachen University 2003.
H. Speth, Ein neues Modell zur Auslegung von Faserbett-Koaleszenzabscheidern, Ph.D. Thesis, RWTH Aachen University 2004.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.