Experimental measurements validate the use of the binary encounter approximation model to accurately compute proton induced dose and radiolysis enhancement from gold nanoparticles
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
Author, co-author :
Hespeels, Félicien; University of Namur, PMR, 61 rue de Bruxelles, Namur, 5000, Belgium
Lucas, Stephane; TIFPA-INFN, Trento Institute for Fundamental Physics and Applications, via Sommarive 14, Trento, I-38123, Italy
Tabarrant, Tijani; GSI- Helmholtzzentrum für Schwerionenforschung Biophysik, Max Planck-Strasse 1, Darmstadt, D-64291, Germany
Scifoni, Emanuele; Institut de Physique Nucleaire, Atomique et Spectroscopie, Centre Europeen d'Archeometrie, Université de Liège, Sart Tilman B15, Liege, B-4000, Belgium
Kraemer, Michael; Division of Nuclear Physics, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
Chene, Grégoire ; Université de Liège - ULiège > Département de physique > Spectroscopie atomique et nucléaire, archéométrie
Strivay, David ; Université de Liège - ULiège > Département de physique > Spectroscopie atomique et nucléaire, archéométrie
Tran, Hoang Son ; Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F
Heuskin, Anne-Catherine
Language :
English
Title :
Experimental measurements validate the use of the binary encounter approximation model to accurately compute proton induced dose and radiolysis enhancement from gold nanoparticles
Agostinelli S et al 2003 Geant4 - a simulation toolkit Nucl. Instrum. Methods Phys. Res. A 506 250-303
Allison J et al 2006 Geant4 developments and applications IEEE Trans. Nucl. Sci. 53 270-8
Allison J et al 2016 Recent developments in G eant 4 Nucl. Instrum. Methods Phys. Res. A 835 186-225
Baluchamy S, Ravichandran P, Periyakaruppan A, Ramesh V, Hall J C, Zhang Y, Jejelowo O, Gridley D S, Wu H and Ramesh G T 2010 Induction of cell death through alteration of oxidants and antioxidants in lung epithelial cells exposed to high energy protons J. Biol. Chem. 285 24769-74
Bernal M A et al 2015 Track structure modeling in liquid water: a review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit Phys. Med. 31 861-74
Boscolo D, Krämer M, Durante M, Fuss M C and Scifoni E 2018 TRAX-CHEM: A pre-chemical and chemical stage extension of the particle track structure code TRAX in water targets Chem. Phys. Lett. 698 11-8
Cai J, Yang J and Jones D 1998 Mitochondrial control of apoptosis: the role of cytochrome c Biochim. Biophys. Acta 1366 139-9
Carter J D, Cheng N N, Qu Y, Suarez G D and Guo T 2007 Nanoscale energy deposition by x-ray absorbing nanostructures J. Phys. Chem. B 111 11622-5
Chêne G, Garnir H-P, Marchal A, Mathis F and Strivay D 2008 Improved energy resolution of a cyclotron beam for RBS measurements Nucl. Instrum. Methods Phys. Res. B 266 2110-2
Cho S H 2005 Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study Phys. Med. Biol. 50 N163-73
Coulter J 2012 Cell type-dependent uptake, localization, and cytotoxicity of 1.9 nm gold nanoparticles Int. J. Nanomed. 2012 2673-85
Friedland W, Dingfelder M, Kundrát P and Jacob P 2011 Track structures, DNA targets and radiation effects in the biophysical Monte Carlo simulation code PARTRAC Mutat. Res. Mol. Mech. Mutagen 711 28-40
Ghita M, McMahon S J, Taggart L E, Butterworth K T, Schettino G and Prise K M 2017 A mechanistic study of gold nanoparticle radiosensitisation using targeted microbeam irradiation Sci. Rep. 7 44752
Hainfeld J F, Dilmanian F A, Slatkin D N and Smilowitz H M 2008 Radiotherapy enhancement with gold nanoparticles J. Pharm. Pharmacol. 60 977-85
Hainfeld J F, Slatkin D N and Smilowitz H M 2004 The use of gold nanoparticles to enhance radiotherapy in mice Phys. Med. Biol. 49 N309-15
Heiskanen K M, Bhat M B, Wang H W, Ma J and Nieminen A L 1999 Mitochondrial depolarization accompanies cytochrome c release during apoptosis in PC6 cells J. Biol. Chem. 274 5654-8
Herold D M, Das I J, Stobbe C C, Iyer R V and Chapman J D 2000 Gold microspheres: a selective technique for producing biologically effective dose enhancement Int. J. Radiat. Biol. 76 1357-64
Hespeels F, Heuskin A C, Scifoni E, Kraemer M and Lucas S 2017 Backscattered electron emission after proton impact on carbon and gold films: experiments and simulations Nucl. Instrum. Methods Phys. Res. B 401 8-17
Heuskin A-C, Gallez B, Feron O, Martinive P, Michiels C and Lucas S 2017 Metallic nanoparticles irradiated by low-energy protons for radiation therapy: are there significant physical effects to enhance the dose delivery? Med. Phys. 44 4299-312
Huang K et al 2012 Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo ACS Nano 6 4483-93
Incerti S, Champion C, Tran H N, Karamitros M, Bernal M, Francis Z, Ivanchenko V and Mantero A 2013 Energy deposition in small-scale targets of liquid water using the very low energy electromagnetic physics processes of the Geant4 toolkit Nucl. Instrum. Methods Phys. Res. B 306 158-64
Incerti S et al 2010a Comparison of GEANT4 very low energy cross section models with experimental data in water Med. Phys. 37 4692-708
Incerti S et al 2010b The Geant4-DNA project Int. J. Model. Simul. Sci. Comput. 01 157-78
Incerti S et al 2018 Geant4-DNA example applications for track structure simulations in liquid water: a report from the Geant4-DNA project Med. Phys. 45 e722-39
Karamitros M et al 2011 Modeling radiation chemistry in the Geant4 toolkit Prog. Nucl. Sci. Technol. 2 503-8
Karamitros M et al 2014 Diffusion-controlled reactions modeling in Geant4-DNA J. Comput. Phys. 274 841-82
Karataş Ö F, Sezgin E, Aydin Ö and Çulha M 2009 Interaction of gold nanoparticles with mitochondria Colloids Surf. B 71 315-8
Kim J-K, Seo S-J, Kim H-T, Kim K-H, Chung M-H, Kim K-R and Ye S-J 2012 Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles Phys. Med. Biol. 57 8309-23
Kirkby C and Ghasroddashti E 2015 Targeting mitochondria in cancer cells using gold nanoparticle-enhanced radiotherapy: a Monte Carlo study Med. Phys. 42 1119-28
Krämer M and Kraft G 1994 Calculations of heavy-ion track structure Radiat. Environ. Biophys. 33 91-109
Kyriakou I, Emfietzoglou D, Ivanchenko V, Bordage M C, Guatelli S, Lazarakis P, Tran H N and Incerti S 2017 Microdosimetry of electrons in liquid water using the low-energy models of Geant4 J. Appl. Phys. 122 024303
Kyriakou I, Incerti S and Francis Z 2015 Technical note: improvements in Geant4 energy-loss model and the effect on low-energy electron transport in liquid water Med. Phys. 42 3870-6
Kyriakou I, Šefl M, Nourry V and Incerti S 2016 The impact of new Geant4-DNA cross section models on electron track structure simulations in liquid water J. Appl. Phys. 119 194902
Lacombe S, Porcel E and Scifoni E 2017 Particle therapy and nanomedicine: state of art and research perspectives Cancer Nanotechnol. 8 9
Lazarakis P, Incerti S, Ivanchenko V, Kyriakou I, Emfietzoglou D, Corde S, Rosenfeld A B, Lerch M, Tehei M and Guatelli S 2018 Investigation of track structure and condensed history physics models for applications in radiation dosimetry on a micro and nano scale in Geant4 Biomed. Phys. 4 024001
Lechtman E, Mashouf S, Chattopadhyay N, Keller B M, Lai P, Cai Z, Reilly R M and Pignol J P 2013 A Monte Carlo-based model of gold nanoparticle radiosensitization accounting for increased radiobiological effectiveness Phys. Med. Biol. 58 3075-87
Li S et al 2016 LET-dependent radiosensitization effects of gold nanoparticles for proton irradiation Nanotechnology 27 455101
Lin Y, McMahon S J, Scarpelli M, Paganetti H and Schuemann J 2014 Comparing gold nano-particle enhanced radiotherapy with protons, megavoltage photons and kilovoltage photons: a Monte Carlo simulation Phys. Med. Biol. 59 7675-89
Liu Y, Liu X, Jin X, He P, Zheng X, Dai Z, Ye F, Zhao T, Chen W and Li Q 2015 The dependence of radiation enhancement effect on the concentration of gold nanoparticles exposed to low- and high-LET radiations Phys. Med. 31 210-8
McMahon S J et al 2011a Biological consequences of nanoscale energy deposition near irradiated heavy atom nanoparticles Sci. Rep. 1 18
McMahon S J et al 2011b Nanodosimetric effects of gold nanoparticles in megavoltage radiation therapy Radiother. Oncol. 100 412-6
McNamara A L, Kam W W Y, Scales N, McMahon S J, Bennett J W, Byrne H L, Schuemann J, Paganetti H, Banati R and Kuncic Z 2016 Dose enhancement effects to the nucleus and mitochondria from gold nanoparticles in the cytosol Phys. Med. Biol. 61 5993-6010
Meylan S, Incerti S, Karamitros M, Tang N, Bueno M, Clairand I and Villagrasa C 2017 Simulation of early DNA damage after the irradiation of a fibroblast cell nucleus using Geant4-DNA Sci. Rep. 7 11923
Minai L, Yeheskely-Hayon D and Yelin D 2013 High levels of reactive oxygen species in gold nanoparticle-targeted cancer cells following femtosecond pulse irradiation Sci. Rep. 3 2146
Misawa M and Takahashi J 2011 Generation of reactive oxygen species induced by gold nanoparticles under x-ray and UV irradiations Nanomed. Nanotechnol. 7 604-14
Penninckx S, Heuskin A-C, Michiels C and Lucas S 2018 The role of thioredoxin reductase in gold nanoparticle radiosensitization effects Nanomedicine 13 2917-37
Perkins S T, Cullen D E and Seltzer S M 1991a Tables and graphs of electron-interaction cross sections from 10 eV to 100 GeV derived from the LLNL Evaluated Electron Data Library (EEDL), Z = 1 to 100 Technical Report UCRL-50400-Vol.31. DOE Contract W-7405-ENG-48. 31 Lawrence Livermore Natl. Lab., CA (https://doi.org/10.2172/5691165)
Perkins S T et al 1991b Tables and graphs of atomic subshell and relaxation data derived from the LLNL Evaluated Atomic Data Library (EADL) Z = 1-100 Lawrence Livermore Nat. Lab., Livermore, CA (https://doi.org/10.2172/10121422)
Piret J-P et al 2012 Copper(ii) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response Nanoscale 4 7168
Polf J C, Bronk L F, Driessen W H P, Arap W, Pasqualini R and Gillin M 2011 Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles Appl. Phys. Lett. 98 193702
Porcel E, Tillement O, Lux F, Mowat P, Usami N, Kobayashi K, Furusawa Y, Le Sech C, Li S and Lacombe S 2014 Gadolinium-based nanoparticles to improve the hadrontherapy performances Nanomed. Nanotechnol. 10 1601-8
Prakash A and Doublié S 2015 Base excision repair in the mitochondria J. Cell. Biochem. 116 1490-9
Sakata D et al 2016 An implementation of discrete electron transport models for gold in the Geant4 simulation toolkit J. Appl. Phys. 120 244901
Sakata D et al 2018 Geant4-DNA track-structure simulations for gold nanoparticles: the importance of electron discrete models in nanometer volumes Med. Phys. 45 2230-42
Sicard-Roselli C, Brun E, Gilles M, Baldacchino G, Kelsey C, McQuaid H, Polin C, Wardlow N and Currell F 2014 A new mechanism for hydroxyl radical production in irradiated nanoparticle solutions Small 10 3338-46
Sotiropoulos M, Henthorn N T, Warmenhoven J W, Mackay R I, Kirkby K J and Merchant M J 2017 Modelling direct DNA damage for gold nanoparticle enhanced proton therapy Nanoscale 9 18413-22
Taggart L E, McMahon S J, Butterworth K T, Currell F J, Schettino G and Prise K M 2016 Protein disulphide isomerase as a target for nanoparticle-mediated sensitisation of cancer cells to radiation Nanotechnology 27 215101
Taggart L E, McMahon S J, Currell F J, Prise K M and Butterworth K T 2014 The role of mitochondrial function in gold nanoparticle mediated radiosensitisation Cancer Nanotechnol. 5 5
Terwagne G, Genard G, Yedji M and Ross G G 2008 Cross-section measurements of the 14N(α,p )17O and 14N(α,α)14N reactions between 3.5 and 6 MeV J. Appl. Phys. 104 084909
Tran H N, El Bitar Z, Champion C, Karamitros M, Bernal M A, Francis Z, Ivantchenko V, Lee S B, Shin J I and Incerti S 2015 Modeling proton and alpha elastic scattering in liquid water in Geant4-DNA Nucl. Instrum. Methods Phys. Res. B 343 132-7
Tran H N et al 2016 Geant4 Monte Carlo simulation of absorbed dose and radiolysis yields enhancement from a gold nanoparticle under MeV proton irradiation Nucl. Instrum. Methods Phys. Res. B 373 126-39
Wälzlein C, Scifoni E, Krämer M and Durante M 2014 Simulations of dose enhancement for heavy atom nanoparticles irradiated by protons Phys. Med. Biol. 59 1441-58
Wang Y, Nartiss Y, Steipe B, McQuibban G A and Kim P K 2012 ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy Autophagy 8 1462-76
Wu H, Lin J, Liu P, Huang Z, Zhao P, Jin H, Ma J, Wen L and Gu N 2016 Reactive oxygen species acts as executor in radiation enhancement and autophagy inducing by AgNPs Biomaterials 101 1-9