[en] Context. The internal rotation of the Sun constitutes a fundamental constraint when modelling angular momentum transport in stellar
interiors. In addition to the more external regions of the solar radiative zone probed by pressure modes, measurements of rotational
splittings of gravity modes would offer an invaluable constraint on the rotation of the solar core.
Aims. We study the constraints that a measurement of the core rotation rate of the Sun could bring on magnetic angular momentum
transport in stellar radiative zones.
Methods. Solar models accounting for angular momentum transport by hydrodynamic and magnetic instabilities were computed
for different initial velocities and disc lifetimes on the pre-main sequence to reproduce the surface rotation velocities observed for
solar-type stars in open clusters. The internal rotation of these solar models was then compared to helioseismic measurements.
Results. We first show that models computed with angular momentum transport by magnetic instabilities and a recent prescription for
the braking of the stellar surface by magnetized winds can reproduce the observations of surface velocities of stars in open clusters.
These solar models predict both a flat rotation profile in the external part of the solar radiative zone probed by pressure modes and
an increase in the rotation rate in the solar core, where the stabilizing effect of chemical gradients plays a key role. A rapid rotation
of the core of the Sun, as suggested by reported detections of gravity modes, is thus found to be compatible with angular momentum
transport by magnetic instabilities. Moreover, we show that the efficiency of magnetic angular momentum transport in regions of
strong chemical gradients can be calibrated by the solar core rotation rate independently from the unknown rotational history of the
Sun. In particular, we find that a recent revised prescription for the transport of angular momentum by the Tayler instability can be
easily distinguished from the original Tayler-Spruit dynamo, with a faster rotating solar core supporting the original prescription.
Conclusions. By calibrating the efficiency of magnetic angular momentum transport in regions of strong chemical gradients, a determination of the solar core rotation rate through gravity modes is of prime relevance not only for the Sun, but for stars in general, since
radial differential rotation precisely develops in these regions during the more advanced stages of evolution.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Eggenberger, P.
Buldgen, Gaël ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie
Salmon, Sébastien ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astrophysique stellaire théorique et astérosismologie
Language :
English
Title :
Rotation rate of the solar core as a key constraint to magnetic angular momentum transport in stellar interiors
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Acevedo-Arreguin, L. A., Garaud, P., & Wood, T. S. 2013, MNRAS, 434, 720
Appourchaux, T., & Corbard, T. 2019, A&A, 624, A106
Appourchaux, T., Belkacem, K., Broomhall, A.-M., et al. 2010, A&ARv, 18, 197
Belkacem K. 2011, in Lecture Notes in Physics, 832, eds. J. P. Rozelot, & C. Neiner (Berlin: Springer Verlag), 139
Belkacem, K., Samadi, R., Goupil, M. J., et al. 2009, A&A, 494, 191
Braithwaite, J. 2006, A&A, 449, 451
Braithwaite, J., & Spruit, H. C. 2017, R. Soc. Open Sci., 4, 160271
Brown, T. M., Christensen-Dalsgaard, J., Dziembowski, W. A., et al. 1989, ApJ, 343, 526
Brun, A. S., & Zahn, J.-P. 2006, A&A, 457, 665
Cantiello, M., Mankovich, C., Bildsten, L., Christensen-Dalsgaard, J., & Paxton, B. 2014, ApJ, 788, 93
Ceillier, T., Eggenberger, P., Garciá, R. A., & Mathis, S. 2013, A&A, 555, A54
Chaboyer, B., Demarque, P., & Pinsonneault, M. H. 1995, ApJ, 441, 865
Charbonneau, P., & MacGregor, K. B. 1993, ApJ, 417, 762
Charbonnel, C., & Talon, S. 2005, Science, 309, 2189
Couvidat, S., Garciá, R. A., Turck-Chièze, S., et al. 2003, ApJ, 597, L77
Deheuvels, S., Dogan, G., Goupil, M. J., et al. 2014, A&A, 564, A27
Denissenkov, P. A., Pinsonneault, M., Terndrup, D. M., & Newsham, G. 2010, ApJ, 716, 1269
Eggenberger, P., Maeder, A., & Meynet, G. 2005, A&A, 440, L9
Eggenberger, P., Meynet, G., Maeder, A., et al. 2008, Ap&SS, 316, 43
Eggenberger, P., Meynet, G., Maeder, A., et al. 2010, A&A, 519, A116
Eggenberger, P., Lagarde, N., Miglio, A., et al. 2017, A&A, 599, A18
Eggenberger, P., Deheuvels, S., Miglio, A., et al. 2019, A&A, 621, A66
Elsworth, Y., Howe, R., Isaak, G. R., et al. 1995, Nature, 376, 669
Fossat, E., Boumier, P., Corbard, T., et al. 2017, A&A, 604, A40
Fuller, J., Piro, A. L., & Jermyn, A. S. 2019, MNRAS, 485, 3661
Gallet, F., & Bouvier, J. 2015, A&A, 577, A98
Garciá, R. A., Turck-Chièze, S., Jiménez-Reyes, S. J., et al. 2007, Science, 316, 1591
Garciá, R. A., Salabert, D., Ballot, J., et al. 2011, in GONG-SoHO 24: A New Era of Seismology of the Sun and Solar-like Stars, J. Phys. Conf. Ser., 271, 012046
Gough, D. O., & McIntyre, M. E. 1998, Nature, 394, 755
Grevesse, N., & Noels, A. 1993, in Origin and Evolution of the Elements: Proceedings of a Symposium in Honour of H. Reeves, held in Paris, June 22-25, 1992, eds. N. Prantzos, E. Vangioni-Flam, & M. Casse (Cambridge, England: Cambridge University Press), 14
Heger, A., Woosley, S. E., & Spruit, H. C. 2005, ApJ, 626, 350
Kosovichev, A. G. 1988, Sov. Astron. Lett., 14, 145
Kosovichev, A. G., Schou, J., Scherrer, P. H., et al. 1997, Sol. Phys., 170, 43
Krishnamurthi, A., Pinsonneault, M. H., Barnes, S., & Sofia, S. 1997, ApJ, 480, 303
Maeder, A., & Meynet, G. 2005, A&A, 440, 1041
Marques, J. P., Goupil, M. J., Lebreton, Y., et al. 2013, A&A, 549, A74
Matt, S. P., Brun, A. S., Baraffe, I., Bouvier, J., & Chabrier, G. 2015, ApJ, 799, L23
Matt, S. P., Brun, A. S., Baraffe, I., Bouvier, J., & Chabrier, G. 2019, ApJ, 870, L27
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.