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ABSTRACT

Context. The internal rotation of the Sun constitutes a fundamental constraint when modelling angular momentum transport in stellar
interiors. In addition to the more external regions of the solar radiative zone probed by pressure modes, measurements of rotational
splittings of gravity modes would offer an invaluable constraint on the rotation of the solar core.
Aims. We study the constraints that a measurement of the core rotation rate of the Sun could bring on magnetic angular momentum
transport in stellar radiative zones.
Methods. Solar models accounting for angular momentum transport by hydrodynamic and magnetic instabilities were computed
for different initial velocities and disc lifetimes on the pre-main sequence to reproduce the surface rotation velocities observed for
solar-type stars in open clusters. The internal rotation of these solar models was then compared to helioseismic measurements.
Results. We first show that models computed with angular momentum transport by magnetic instabilities and a recent prescription for
the braking of the stellar surface by magnetized winds can reproduce the observations of surface velocities of stars in open clusters.
These solar models predict both a flat rotation profile in the external part of the solar radiative zone probed by pressure modes and
an increase in the rotation rate in the solar core, where the stabilizing effect of chemical gradients plays a key role. A rapid rotation
of the core of the Sun, as suggested by reported detections of gravity modes, is thus found to be compatible with angular momentum
transport by magnetic instabilities. Moreover, we show that the efficiency of magnetic angular momentum transport in regions of
strong chemical gradients can be calibrated by the solar core rotation rate independently from the unknown rotational history of the
Sun. In particular, we find that a recent revised prescription for the transport of angular momentum by the Tayler instability can be
easily distinguished from the original Tayler-Spruit dynamo, with a faster rotating solar core supporting the original prescription.
Conclusions. By calibrating the efficiency of magnetic angular momentum transport in regions of strong chemical gradients, a deter-
mination of the solar core rotation rate through gravity modes is of prime relevance not only for the Sun, but for stars in general, since
radial differential rotation precisely develops in these regions during the more advanced stages of evolution.
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1. Introduction

The solar five-minute oscillations have led to the determination
of the rotation profile of the Sun (Kosovichev 1988; Brown et al.
1989; Elsworth et al. 1995; Kosovichev et al. 1997; Couvidat
et al. 2003; García et al. 2007). This fundamental constraint for
the modelling of angular momentum (AM) transport in stellar
interiors reveals that rotation is nearly uniform in the solar ra-
diative zone down to about 0.2 R�. Interestingly, solar models
that account for hydrodynamic transport processes predict a high
degree of radial differential rotation in the radiative interior of
the Sun, in strong contradiction with helioseismic measurements
(Pinsonneault et al. 1989; Chaboyer et al. 1995; Eggenberger
et al. 2005; Turck-Chièze et al. 2010). This indicates that an ef-
ficient additional mechanism for the AM transport must be at
work in the solar radiative zone.

As recognized long ago, even a weak magnetic field can have
a significant impact on the internal rotation of a star (Mestel
1953). Large-scale fossil magnetic fields can be invoked to ex-
plain the absence of radial differential rotation in the solar radia-
tive zone (see e.g. Mestel & Weiss 1987; Charbonneau & Mac-
Gregor 1993; Rüdiger & Kitchatinov 1996; Spada et al. 2010).

A key issue is then related to the coupling between the radiative
interior and the convective envelope of the Sun. Helioseismic
data indicate that there is no differential rotation in the solar ra-
diative zone, while latitudinal differential rotation is present in
the convective envelope. If a large-scale magnetic field connects
the radiative zone to the convective envelope, then the latitudi-
nal differential rotation of the envelope could be imposed on the
radiative interior, in contradiction with helioseismic constraints.
This illustrates the difficulty of simultaneously reproducing the
nearly uniform rotation in the radiative interior of the Sun with
the sharp transition to latitudinal differential rotation in its con-
vective envelope.

One way to reproduce these helioseismic data is to con-
fine the large-scale field in the solar radiative interior. Gough
& McIntyre (1998) proposed a model that explains how the con-
finement of the field could be achieved. Numerical simulations
have been computed to try to reproduce the configuration pro-
posed by Gough & McIntyre (1998) and have led to contrast-
ing results (see e.g. Brun & Zahn 2006; Strugarek et al. 2011;
Acevedo-Arreguin et al. 2013; Wood & Brummell 2018). More-
over, a significant increase in the viscosity seems to be required
in addition to a large-scale fossil magnetic field in the solar ra-
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diative interior to correctly reproduce the low degree of radial
differential rotation deduced from helioseismic measurements
(Rüdiger & Kitchatinov 1996; Spada et al. 2010).

It is then particularly interesting to consider the role of mag-
netic instabilities in the transport of AM. This has been reviewed
by Spruit (1999) who found, in stellar radiative zones, that the
Tayler instability (Tayler 1973) is likely to be the first instabil-
ity to set in. Based on this instability of the toroidal field and
the winding-up of an initial weak field by differential rotation,
Spruit (2002) proposed a field amplification cycle that produces
a small-scale time-dependent dynamo. Interestingly, the ampli-
tudes of these self-sustained magnetic fields are much larger
in the horizontal than in the vertical direction. Consequently,
such a small-scale dynamo (known as the Tayler-Spruit dynamo)
can correctly account for the sharp transition from uniform ro-
tation in the solar radiative zone to latitudinal differential ro-
tation in the convective envelope. Numerical simulations have
been performed to test the viability of this process in stellar ra-
diative zones. Simulations by Braithwaite (2006) indicate that
such a small-scale dynamo can be at work in a differentially ro-
tating stable stratification, while no sign of a dynamo process
was found by Zahn et al. (2007). A definitive answer about the
existence of this mechanism would require numerical simula-
tions performed under more realistic stellar conditions, which is
of course particularly difficult to achieve (Braithwaite & Spruit
2017).

In this context, direct observational constraints on the inter-
nal rotation of stars are of prime importance in order to improve
the modelling of AM transport in stellar interiors. For the Sun,
the inclusion of the Tayler-Spruit dynamo leads to a predicted
solar rotation profile in good agreement with the internal rota-
tion deduced from the rotational frequency splittings of pres-
sure (p-) modes (Eggenberger et al. 2005). Measurements of ro-
tational splittings of gravity (g-) modes would offer invaluable
constraints on the rotation of the solar core in addition to the
more external regions probed by p-modes. With the increasing
total duration of GOLF data, achieving such a detection becomes
a real possibility (e.g. Belkacem et al. 2009; Appourchaux et al.
2010; Belkacem 2011). As an illustration of this, a recent de-
tection of g-modes has been reported by Fossat et al. (2017).
Similarly to a previous reported detection (García et al. 2007),
it is interesting to note that a fast rotating solar core is favoured
by the results of Fossat et al. (2017). Due to the extreme diffi-
culty of detecting g-modes, the robustness of this detection is not
guaranteed (see e.g. Schunker et al. 2018; Appourchaux & Cor-
bard 2019). Nevertheless, the possibility of detecting g-modes
and probing the rotation of the solar core motivates us to investi-
gate in more detail how the modelling of magnetic AM transport
could benefit from such a detection. In particular, is a magnetic
transport of AM compatible with both the nearly uniform rota-
tion deduced from p-modes and a fast rotating solar core? More
importantly, would a determination of the solar core rotation rate
be able to directly constrain the efficiency of AM transport in the
core of the Sun without being impacted by its unknown past ro-
tational evolution?

The input physics and the rotational evolution of models
accounting for hydrodynamic and magnetic AM transport pro-
cesses are described in Sect. 2. The internal rotation of these so-
lar models is studied and compared to helioseismic constraints
in Sect. 3. The conclusion is given in Sect. 4.

2. Rotational evolution of the models

Stellar models are computed in the framework of the assumption
of shellular rotation (Zahn 1992) with the Geneva stellar evolu-
tion code (Eggenberger et al. 2008). The internal transport of an-
gular momentum is followed simultaneously to the evolution of
the star by taking into account meridional circulation, shear in-
stability, and magnetic fields in the context of the Tayler-Spruit
dynamo (see Sect. 2.1 of Eggenberger et al. 2010, for more de-
tails).

We refer to Maeder & Meynet (2005) for details about the ex-
act modelling of the Tayler-Spruit dynamo in the Geneva code.
We recall here the values of the effective viscosity (νTS) and the
minimum value of radial differential rotation needed for the dy-
namo process to operate (qmin) in the two cases originally dis-
cussed by Spruit (2002). When the stratification is dominated by
the gradient of chemical composition,

νTS = r2Ωq2
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with r the radius, Ω the mean angular velocity, q = − ∂ ln Ω
∂ ln r , K

the thermal diffusivity, η the magnetic diffusivity, and NT and Nµ

the thermal and chemical composition part of the Brunt-Väisälä
frequency (N2 = N2

T + N2
µ).

Including these hydrodynamic and magnetic AM transport
processes, the evolution of 1 M� models is computed from the
pre-main sequence (PMS) to the solar age. Atomic diffusion is
taken into account with diffusion coefficients computed accord-
ing to the prescription by Paquette et al. (1986). Braking of the
stellar surface by magnetized winds is modelled by adopting
the braking law of Matt et al. (2015, 2019). The corresponding
torque is then given by
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with R and M the stellar radius and mass, Ro the Rossby num-
ber, and τcz the convective turnover timescale. The constant
χ defines the transition from saturated to unsaturated regime
(χ = Ro�/Rosat = Ωsatτcz/Ω�τcz�) and is fixed to 10. The coeffi-
cient p is taken equal to 2.3 and the braking constant T� is cali-
brated to reproduce the surface rotation rate of the Sun. In con-
vective zones, a very efficient transport of AM is assumed, result-
ing in a flat rotation profile in these zones. The initial chemical
composition, the mixing-length parameter for convection, and
the braking constant related to magnetized winds are then cali-
brated to reproduce the solar photospheric abundances as given
by Grevesse & Noels (1993), the solar luminosity, radius, and
surface rotational velocity after 4.57 Gyr.

The rotational history of the Sun being unknown, we con-
sider different models representative of slow, moderate, and fast
rotators as deduced from observations of surface rotation rates
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of solar-type stars in open clusters of various ages. The ini-
tial rotation rates and disc lifetimes during the PMS are var-
ied in order to try to reproduce the 90th, 50th, and 25th rota-
tional percentiles (corresponding to fast, moderate, and slow ro-
tating cases, respectively) in these clusters, as given by Gallet
& Bouvier (2015). The evolution of the surface angular velocity
of these models as a function of time is shown in Fig. 1. The
fast rotating model (blue line) is computed with an initial angu-
lar velocity of 18 Ω� and a disc lifetime of 2 Myr. The moderate
(green line) and slow (red line) rotating models share the same
disc lifetime of 6 Myr and have an initial velocity of 5 Ω� and
3.2 Ω�, respectively. During the disc-locking phase, we simply
assume that the surface angular velocity of the star remains con-
stant. After this phase, the surface velocity rapidly increases due
to the PMS contraction. The zero age main sequence (ZAMS) is
reached at an age of about 40 Myr with a surface velocity close
to its maximum value. Magnetized winds are then responsible
for the decrease in the surface rotation of the models during the
main sequence (MS) and to the convergence of their surface ro-
tation rates to reach the solar value after 4.57 Gyr.

Fig. 1. Surface angular velocity Ωs as a function of age for solar mod-
els. Blue, green, and red lines indicate models of fast, moderate, and
slow rotators, respectively. Open symbols show observations of surface
rotation rates in open clusters taken from Table 1 of Gallet & Bouvier
(2015), with blue, green, and red symbols indicating the 90th, 50th,
and 25th rotational percentiles, respectively. The black dot indicates the
surface rotation of the Sun. Continuous lines refer to models computed
with the surface braking law of Matt et al. (2015), while the dashed red
line corresponds to a model computed with the braking law of Krishna-
murthi et al. (1997).

Figure 1 shows that rotating models computed with the
Tayler-Spruit dynamo and the braking law of Matt et al. (2015)
correctly reproduce the surface rotation rates observed for solar-
type stars in open clusters. This is an interesting result, because
a previous study by Denissenkov et al. (2010) suggested that the
efficient transport of AM induced by the Tayler-Spruit dynamo
is not compatible with the surface rotation observed for slowly
rotating stars. The study by Denissenkov et al. (2010) used the
braking law of Krishnamurthi et al. (1997), while our results are
obtained with the more recent prescription of Matt et al. (2015).
To investigate the influence of the adopted braking law on these
conclusions, an additional model is computed for the slow rotat-

ing case using the Krishnamurthi et al. (1997) law as in Denis-
senkov et al. (2010). The evolution of the surface velocity of this
model is shown by the dashed red line in Fig. 1. Adopting the
braking law of Krishnamurthi et al. (1997) effectively leads to a
surface rotation rate that is too high during the beginning of the
MS for slowly rotating stars, in good agreement with the results
of Denissenkov et al. (2010). This illustrates the sensitivity of
the predicted surface rotation rates on the uncertainties related
to the adopted braking law.

3. Internal rotation of the solar models

Figure 2 shows the rotation profile of the solar models corre-
sponding to the fast (blue), moderate (green), and slow (red) ro-
tating cases discussed above. We note that these models exhibit
higher core rotation rates than previous models computed by
Eggenberger et al. (2005) due to the different input physics used.
In particular, the present models correspond to complete solar
models computed with atomic diffusion, rotation, and magnetic
fields from the PMS to the solar age, while Eggenberger et al.
(2005) simply focussed on the evolution of the internal rotation
of 1 M� models computed without atomic diffusion and assum-
ing solid-body rotation on the ZAMS. All models correctly re-
produce the rotation rates in the external part of the radiative
zone (above 0.2 R�) as probed by p-modes (black dots in Fig. 2).
A key feature of these models is that they predict an increase in
the rotation rate in the solar core (below about 0.2 R�). We thus
find that a rapid rotation of the core of the Sun can be reproduced
by an efficient transport of AM by magnetic instabilities, which
is required to explain the nearly uniform rotation of the solar
radiative zone deduced from helioseismic measurements of p-
modes. This is an important result regarding the possibility of
deducing the solar core rotation rate through the detection of ro-
tational splittings of g-modes. In particular, reported detections
of g-modes suggest that the core of the Sun could be rotating
more rapidly than the rest of the radiative zone (García et al.
2007, 2011; Fossat et al. 2017).

Fig. 2. Rotation profiles for solar models computed with different initial
rotation velocities and disc lifetimes. Blue, green, and red continuous
lines correspond to the fast, moderate, and slow rotating models shown
in Fig. 1. The light blue line indicates the model computed with the re-
vised prescription of Fuller et al. (2019). Black dots correspond to the
internal rotation in the solar radiative zone as deduced from p-modes
(Couvidat et al. 2003). The red and blue regions indicate the mean ro-
tation rate in the solar core corresponding to the detections of g-modes
reported by García et al. (2007) and Fossat et al. (2017), respectively.

The change in rotation rates between the core and the more
external part of the solar radiative zone is related to the stabiliz-
ing role of the gradients of chemical composition. In the solar
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interior, stratification is due to both chemical and thermal gra-
dients. In the case of hydrodynamic and magnetic instabilities,
thermal diffusion efficiently reduces the stabilizing effect of the
entropy gradient (e.g. Zahn 1974; Spruit 1999); however, ther-
mal diffusion does not reduce the strong inhibiting effect of the
chemical gradients. These gradients of chemical composition de-
velop in the central parts of the star during its MS evolution due
to nuclear reactions. This is illustrated in Fig. 3, which shows
the chemical (N2

µ) and thermal (N2
T ) parts of the Brunt-Väisälä

frequency for the solar model computed in the moderate rotating
case. In the Sun, the contribution of chemical gradients to the
total Brunt-Väisälä frequency becomes significant below 0.3 R�,
and N2

µ is dominating over N2
T below about 0.15 R�.

Fig. 3. Brunt-Väisälä frequencies N2
tot, N2

µ , and N2
T (N2

tot = N2
µ + N2

T ) in
the central layers of the solar model computed in the case of a moderate
initial rotation rate.

The impact of chemical gradients on the solar core rotation
rate can be understood by comparing the equations of the Tayler-
Spruit dynamo in the cases where the stratification is dominated
by the chemical (Eq. 1 above) and thermal (Eq. 2) gradients. In
Eq. 1 we first note that the efficiency associated with the trans-
port of AM by the Tayler-Spruit dynamo is strongly reduced
when the gradient of molecular weight increases (νTS ∝ N−4

µ ∝
∇−2
µ ). In addition to the decrease in the AM transport efficiency,

chemical gradients also have an important effect on the mini-
mum value of radial differential rotation needed for the dynamo
to operate (qmin). Due to the reduction of the stabilizing effect
of the entropy gradient by thermal diffusion, the expression of
qmin in regions where chemical gradients dominate (Eq. 1) is in-
deed the same as that obtained when thermal stratification dom-
inates (Eq. 2) given that N2

µ is replaced by an effective frequency
N2

T,eff
≈ η

K N2
T (Spruit 1999). The ratio of magnetic to thermal

diffusivity being much lower than one, the minimum value of
radial differential rotation needed for the dynamo to operate is
much higher in regions with strong chemical gradients. The de-
crease in the viscosity and the increase in the value of the min-
imum differential rotation qmin induced by chemical gradients
both participate in the rapid transition from a nearly flat rotation
profile above 0.2 R� to a faster rotating core seen in Fig. 2.

The increase in the rotation rate in the solar core is very simi-
lar for models computed for different initial rotational velocities.
The core rotation rate of the Sun as predicted by models account-
ing for AM transport by magnetic instabilities is thus found to
be almost insensitive to its rotational history. This is a funda-
mental result, since it implies that a measurement of the solar
core rotation rate would directly constrain the efficiency of AM
transport by magnetic instabilities without being impacted by the
unknown rotational history of the Sun. This is of particular in-
terest because current expressions for the Tayler-Spruit dynamo

were obtained by neglecting multiplying factors of order unity
(see conclusion of Spruit 2002). Moreover, a revised prescription
for AM transport by the Tayler instability has recently been pro-
posed (Fuller et al. 2019). The effective viscosity and minimum
radial differential rotation needed for this process to operate are
given by (Eqs. 35 and 36 in Fuller et al. 2019)

νT = α3r2Ω

(
Ω

Neff

)2

; qmin = α−3
(Neff

Ω

)5/2 (
η

r2Ω

)3/4
, (3)

with α a dimensionless parameter fixed to 1 and Neff the effec-
tive Brunt-Väisälä frequency given by N2

eff
=

η
K N2

T + N2
µ . An ad-

ditional model is then computed for the moderate rotating case
using Eq. (3) proposed by Fuller et al. (2019) instead of the origi-
nal Tayler-Spruit dynamo. The effective viscosity νT in the solar
radiative zone associated with the AM transport by the Tayler
instability as given by Eq. (3) is typically 4 orders of magnitude
higher than that associated with the Tayler-Spruit dynamo. Ow-
ing to this very efficient AM transport, the prescription recently
proposed by Fuller et al. (2019) predicts an almost uniform ro-
tation down to the solar centre (light blue line in Fig. 2). Mod-
els computed with the original Tayler-Spruit dynamo and with
the prescription of Fuller et al. (2019) can then be easily dis-
tinguished by a determination of the solar core rotation rate. As
shown in Fig. 2 a fast rotating solar core, as suggested by re-
ported detections of g-modes, favours the original prescription
for the Tayler-Spruit dynamo1.

4. Conclusion

Solar models that account for AM transport by meridional cir-
culation, shear instability, and magnetic instabilities were first
computed for different initial velocities and disc lifetimes on the
PMS. Using the prescription of Matt et al. (2015) for the brak-
ing of the stellar surface by magnetized winds, we find that the
evolution of the surface velocity of these models can reproduce
the surface rotation rates observed for solar-type stars in open
clusters.

We then study the internal rotation of these solar models.
An almost uniform rotation is predicted above 0.2 R�, in good
agreement with helioseismic measurements of p-modes, while
an increase in the rotation rate is found in the solar core. The
change in rotation rates between the core and the more exter-
nal part of the solar radiative zone seen in these models is a key
signature of the inhibiting effect of chemical gradients on the
transport of AM by magnetic instabilities. We thus find that a
solar core rotating faster than the more external part of the radia-
tive zone, as suggested by reported detections of g-modes, can
be correctly reproduced by models accounting for AM transport
by magnetic instabilities. Should the detection of a fast rotating
solar core be confirmed, this would strongly support magnetic
instabilities as the main AM transport process in the solar ra-
diative zone. In addition to magnetic AM transport, it would be
interesting to perform the same kind of comparison with solar
models that account for AM transport by internal gravity waves
(e.g. Zahn et al. 1997; Charbonnel & Talon 2005; Pinçon et al.
2017).

We also show that the efficiency of AM transport by mag-
netic instabilities in regions of strong chemical gradients can be
directly calibrated by the measurement of the solar core rotation
rate independently from the unknown past rotational evolution of

1 Even these models predict a slightly lower mean rotation rate of the
solar radiative zone than the value reported by Fossat et al. (2017).
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the Sun. We then find that the revised prescription for AM trans-
port by the Tayler instability recently proposed by Fuller et al.
(2019) can be easily distinguished from the original prescription
of the Tayler-Spruit dynamo, with a fast rotating solar core in
favour of the original prescription proposed by Spruit (2002).

We conclude that the core rotation rate of the Sun consti-
tutes the perfect constraint to calibrate the efficiency of magnetic
AM transport in regions of strong chemical gradients. This is of
prime interest not only for the specific case of solar models, but
for stellar evolution in general, since radial differential rotation
precisely develops in layers with strong gradients of chemical
composition (e.g. Heger et al. 2005; Maeder & Meynet 2005).
Calibrating the AM transport efficiency in these regions from a
firm detection of solar g-modes would ideally complement con-
straints on AM transport that are currently being obtained from
comparisons between rotating models and rotational splittings
of mixed modes in subgiants (e.g. Deheuvels et al. 2014; Pinçon
et al. 2017; Eggenberger et al. 2019) and red giant stars (e.g.
Eggenberger et al. 2012; Marques et al. 2013; Ceillier et al. 2013;
Cantiello et al. 2014; Spada et al. 2016; Eggenberger et al. 2017).
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Swiss National Science Foundation (project Interacting Stars, number 200020-
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