Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537:347-355. https://doi.org/10.1038/nature19949
Al Shweiki MR, Mönchgesang S, Majovsky P, Thieme D, Trutschel D, Hoehenwarter W (2017) Assessment of label-free quantification in discovery proteomics and impact of technological factors and natural variability of protein abundance. J Proteome Res acs.jproteome.6b00645. https://doi.org/10.1021/acs.jproteome.6b00645
Almeida AM, Nanni P, Ferreira AM, Fortes C, Grossmann J, Bessa RJB, Costa P (2017) The longissimus thoracis muscle proteome in Alentejana bulls as affected by growth path. J Proteomics 152:206-215. https://doi.org/10.1016/j.jprot.2016.10.020
Alvarez-Manilla G, Warren NL, Atwood J III, Abney T, Azadi P, Pierce M, Orlando R (2006) Tools for glycomics: isotopic labeling of glycans with C-13 for relative quantitation. Glycobiology 16:677-687
Anderson L, Hunter CL (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5:573-588. https://doi.org/10.1074/ mcp.M500331-MCP200
Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017-1031. https://doi.org/10.1007/ s00216-007-1486-6
Barnidge DR, Dratz EA, Martin T, Bonilla LE, Moran LB, Lindall A (2003) Absolute quantification of the G protein-coupled receptor rhodopsin by LC/MS/MS using proteolysis product peptides and synthetic peptide standards. Anal Chem 75:445-451. https://doi.org/10.1021/ac026154
Bernhardt OM, Selevsek N, Gillet L, Rinner O et al (2012) Spectronaut: a fast and efficient algorithm for MRM-like processing of data-independent acquisition (SWATH) data. In: Proceedings of the 60th ASMS conference on mass spectrometry and allied topics, Vancouver
Beynon RJ, Doherty MK, Pratt JM, Gaskell SJ (2005) Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides. Nat Methods 2:587-589. https://doi.org/10.1038/NMETH774
Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB (1995) Nonselective and efficient fluorescent labeling of glycans using 2-amino benzamide and anthranilic acid. Anal Biochem 230:229-238
Bilbao A, Varesio E, Luban J, Strambio-De-Castillia C, Hopfgartner G, Müller M, Lisacek F (2015) Processing strategies and software solutions for data-independent acquisition in mass spectrometry. Proteomics 15:964-980. https://doi.org/10.1002/pmic.201400323
Biniossek ML, Lechel A, Rudolph KL, Martens UM, Zimmermann S (2013) Quantitative proteomic profiling of tumor cell response to telomere dysfunction using isotope-coded protein labeling (ICPL) reveals interaction network of candidate senescence markers. J Proteomics 91:515-535. https://doi.org/10.1016/j.jprot.2013.08.007
Bislev SL, Kusebauch U, Codrea MC, Beynon RJ, Harman VM, Røntved CM, Aebersold R, Moritz RL, Bendixen E (2012) Quantotypic properties of QconCAT peptides targeting bovine host response to Streptococcus uberis. J Proteome Res 11:1832-1843. https://doi.org/10.1021/ pr201064g
Boersema PJ, Aye TT, Van Veen TAB, Heck AJR, Mohammed S (2008) Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 8:4624-4632. https://doi.org/10.1002/pmic.200800297
Bonenfant D, Towbin H, Coulot M, Schindler P, Mueller DR, van Oostrum J (2007) Analysis of dynamic changes in post-translational modifications of human histones during cell cycle by mass spectrometry. Mol Cell Proteomics 6:1917-1932. https://doi.org/10.1074/mcp.M700070-MCP200
Bourmaud A, Gallien S, Domon B (2016) Parallel reaction monitoring using quadrupole-Orbitrap mass spectrometer: principle and applications. Proteomics 16:2146-2159. https://doi.org/10. 1002/pmic.201500543
Braun CR, Bird GH, Wühr M, Erickson BK, Rad R, Walensky LD, Gygi SP, Haas W (2015) Generation of multiple reporter ions from a single isobaric reagent increases multiplexing capacity for quantitative proteomics. Anal Chem 87:9855-9863. https://doi.org/10.1021/acs. analchem.5b02307
Britton L-MP, Gonzales-Cope M, Zee BM, Garcia BA (2011) Breaking the histone code with quantitative mass spectrometry. Expert Rev Proteomics 8:631-643. https://doi.org/10.1586/ epr.11.47
Brownridge P, Beynon RJ (2011) The importance of the digest: proteolysis and absolute quantification in proteomics. Methods 54:351-360. https://doi.org/10.1016/j.ymeth.2011.05.005
Bruderer R, Bernhardt OM, Gandhi T, Miladinović SM, Cheng L-Y, Messner S, Ehrenberger T, Zanotelli V, Butscheid Y, Escher C, Vitek O, Rinner O, Reiter L (2015) Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 14:1400-1410. https://doi.org/10.1074/mcp.M114.044305
Brun V, Dupuis A, Adrait A, Marcellin M, Thomas D, Court M, Vandenesch F, Garin J (2007) Isotope-labeled protein standards: toward absolute quantitative proteomics. Mol Cell Proteomics 6:2139-2149. https://doi.org/10.1074/mcp.M700163-MCP200
Brun V, Masselon C, Garin J, Dupuis A (2009) Isotope dilution strategies for absolute quantitative proteomics. J Proteomics 72:740-749. https://doi.org/10.1016/j.jprot.2009.03.007
Bundgaard L, Jacobsen S, Dyrlund TF, Sørensen MA, Harman VM, Beynon RJ, Brownridge PJ, Petersen LJ, Bendixen E (2014) Development of a method for absolute quantification of equine acute phase proteins using concatenated peptide standards and selected reaction monitoring. J Proteome Res 13:5635-5647. https://doi.org/10.1021/pr500607s
Busch R, Neese RA, Awada M, Hayes GM, Hellerstein MK (2007) Measurement of cell proliferation by heavy water labeling. Nat Protoc 2:3045-3057. https://doi.org/10.1038/nprot.2007. 420
Cannon J, Lohnes K, Wynne C, Wang Y, Edwards N, Fenselau C (2010) High-throughput middledown analysis using an Orbitrap. J Proteome Res 9:3886-3890. https://doi.org/10.1021/ pr1000994
Catherman AD, Skinner OS, Kelleher NL (2014) Top down proteomics: facts and perspectives. Biochem Biophys Res Commun 445:683-693. https://doi.org/10.1016/j.bbrc.2014.02.041
Chahrour O, Cobice D, Malone J (2015) Stable isotope labelling methods in mass spectrometrybased quantitative proteomics. J Pharm Biomed Anal 113:2-20. https://doi.org/10.1016/j.jpba. 2015.04.013
Chang C, Sabidó E, Aebersold R, Vitek O (2014) Targeted protein quantification using sparse reference labeling. Nat Methods 11:301-304. https://doi.org/10.1038/nmeth.2806
Choi M, Filiz Eren-Dogu Z, Colangelo CM, Cottrell JS, Hoopmann MR, Kapp EA, Kim S, Lam H, Neubert TA, Palmblad M, Phinney BS, Weintraub ST, Maclean B, Vitek O (2016) ABRF proteome informatics research group (iPRG) 2015 study: detection of differentially abundant proteins in label-free quantitative LC-MS/MS experiments. J Proteome Res (just accepted manuscript). https://doi.org/10.1021/acs.jproteome.6b00881
Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M (2014) The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol 15:536-550. https:// doi.org/10.1038/nrm3841
Christoforou AL, Lilley KS (2012) Isobaric tagging approaches in quantitative proteomics: the ups and downs. Anal Bioanal Chem 404:1029-1037. https://doi.org/10.1007/s00216-012-6012-9
Ciccimaro E, Blair IA (2010) Stable-isotope dilution LC-MS for quantitative biomarker analysis. Bioanalysis 2:311-341. https://doi.org/10.4155/bio.09.185
de Deus Moura R, Wludarski SCL, Carvalho FM, Bacchi CE (2012) Immunohistochemistry applied to the differential diagnosis between ductal and lobular carcinoma of the breast. Appl Immunohistochem Mol Morphol 1. https://doi.org/10.1097/PAI.0b013e318255bafa
Desiderio DM, Kai M (1983) Preparation of stable isotope-Incorporated peptide internal standards for field desorption mass spectrometry quantification of peptides in biologic tissue. Biol Mass Spectrom 10:471-479. https://doi.org/10.1002/bms.1200100806
Domon B, Aebersold R (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol 28:710-721. https://doi.org/10.1038/nbt.1661
Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4:207-214. https://doi.org/10.1038/ nmeth1019
Evans C, Noirel J, Ow SY, Salim M, Pereira-Medrano AG, Couto N, Pandhal J, Smith D, Pham TK, Karunakaran E, Zou X, Biggs CA, Wright PC (2012) An insight into iTRAQ: where do we stand now? Anal Bioanal Chem 404:1011-1027. https://doi.org/10.1007/s00216-012-5918-6
Fæste CK, Moen A, Schniedewind B, Haug Anonsen J, Klawitter J, Christians U (2016) Development of liquid chromatography-tandem mass spectrometry methods for the quantitation of Anisakis simplex proteins in fish. J Chromatogr A 1432:58-72. https://doi.org/10.1016/j. chroma.2016.01.002
Fisher RA (1926) The arrangement of field experiments. J Minist Agric Great Brit 33:503-513. https://doi.org/10.1007/978-1-4612-4380-9_8
Fisher SRA (1971) The design of experiments. Hafner Publishing Co., New York, pp 1-27
Gallego M, Mora L, Concepción Aristoy M, Toldrá F (2016a) The use of label-free mass spectrometry for relative quantification of sarcoplasmic proteins during the processing of dry-cured ham. Food Chem 196:437-444. https://doi.org/10.1016/j.foodchem.2015.09.062
Gallego M, Mora L, Toldrá F (2016b) Peptidomics as a tool for quality control in dry-cured ham processing. J Proteomics 147:98-107. https://doi.org/10.1016/j.jprot.2016.02.020
Gan CS, Chong PK, Pham TK, Wright PC (2007) Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ). J Proteome Res 6:821-827. https://doi.org/10.1021/pr060474i
Geiger T, Wisniewski JR, Cox J, Zanivan S, Kruger M, Ishihama Y, Mann M (2011) Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nat Protoc 6:147-157. https://doi.org/10.1038/nprot.2010.192
Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100:6940-6945. https://doi.org/10.1073/pnas.0832254100
Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11:O111.016717-O111.016717. https://doi.org/10.1074/mcp.O111.016717
Gregorich ZR, Peng Y, Cai W, Jin Y, Wei L, Chen AJ, McKiernan SH, Aiken JM, Moss RL, Diffee GM, Ge Y (2016) Top-down targeted proteomics reveals decrease in myosin regulatory light-chain phosphorylation that contributes to sarcopenic muscle dysfunction. J Proteome Res 15:2706-2716. https://doi.org/10.1021/acs.jproteome.6b00244
Gruhler A, Schulze WX, Matthiesen R, Mann M, Jensen ON (2005) Stable isotope labeling of arabidopsis thaliana cells and quantitative proteomics by mass spectrometry. Mol Cell Proteomics 4:1697-1709. https://doi.org/10.1074/mcp.M500190-MCP200
Guevel L, Lavoie JR, Perez-Iratxeta C, Rouger K, Dubreil L, Feron M, Talon S, Brand M, Megeney LA (2011) Quantitative proteomic analysis of dystrophic dog muscle. J Proteome Res 10:2465-2478. https://doi.org/10.1021/pr2001385
Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994-999. https://doi.org/10.1038/13690
Hakimov HA, Walters S, Wright TC, Meidinger RG, Verschoor CP, Gadish M, Chiu DKY, Strömvik MV, Forsberg CW, Golovan SP (2009) Application of iTRAQ to catalogue the skeletal muscle proteome in pigs and assessment of effects of gender and diet dephytinization. Proteomics 9:4000-4016. https://doi.org/10.1002/pmic.200900049
Hanke S, Besir H, Oesterhelt D, Mann M (2008) Absolute SILAC for accurate quantitation of proteins in complex mixtures down to the attomole level. J Proteome Res 7:1118-1130. https:// doi.org/10.1021/pr7007175
Hebert AS, Richards AL, Bailey DJ, Ulbrich A, Coughlin EE, Westphall MS, Coon JJ (2014) The one hour yeast proteome. Mol Cell Proteomics 13:339-347. https://doi.org/10.1074/mcp.M113.034769
Hernández-Castellano LE, Ferreira AM, Nanni P, Grossmann J, Argüello A, Capote J, Cai G, Lippolis J, Castro N, de Almeida AM (2016) The goat (Capra hircus) mammary gland secretory tissue proteome as influenced by weight loss: a study using label free proteomics. J Proteomics 145:60-69. https://doi.org/10.1016/j.jprot.2016.03.030
Hoffmann M, Marx K, Reichl U, Wuhrer M, Rapp E (2016) Site-specific O -glycosylation analysis of human blood plasma proteins. Mol Cell Proteomics 15:624-641. https://doi.org/10.1074/ mcp.M115.053546
Hsu C-C, Chou P-T, Zare RN (2015) Imaging of proteins in tissue samples using nanospray desorption electrospray ionization mass spectrometry. Anal Chem 87:11171-11175. https:// doi.org/10.1021/acs.analchem.5b03389
Hu A, Noble WS, Wolf-Yadlin A (2016) Technical advances in proteomics: new developments in data-independent acquisition. F1000Research 5:419. 10.12688/f1000research.7042.1
Huan P, Wang H, Liu B (2015) A label-free proteomic analysis on competent larvae and juveniles of the Pacific oyster Crassostrea gigas. PLoS One 10:e0135008. https://doi.org/10.1371/ journal.pone.0135008
Huang H, Larsen MR, Palmisano G, Dai J, Lametsch R (2014) Quantitative phosphoproteomic analysis of porcine muscle within 24h postmortem. J Proteomics 106:125-139. https://doi.org/ 10.1016/j.jprot.2014.04.020
Hülsmeier AJ, Paesold-Burda P, Hennet T (2007) N-glycosylation site occupancy in serum glycoproteins using multiple reaction monitoring liquid chromatography-mass spectrometry. Mol Cell Proteomics 6:2132-2138. https://doi.org/10.1074/mcp.M700361-MCP200
Institute for System Biology (2004) PeptideAtlas. http://www.peptideatlas.org/
Institute for Systems Biology (2013) SWATHAtlas. http://www.swathatlas.org/index.php
Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, Mann M (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4:1265-1272. https://doi.org/10.1074/mcp.M500061-MCP200
Kakutani T, Paszkowski J, Matzke AJ, Kooter JM, Benito MI, Walbot V, Haverkamp TH, Van Luenen HG, Stein P, Hayashi H, Schultz RM, Cogoni C, Faugeron G, Baskar R, Grossniklaus U, Springer PS, Holding DR, Groover A, Yordan C, Martienssen RA, Vinkenoog R, Adams S, Spielman M, Dickinson HG, Scott RJ, Byrne M, Timmermans M, Kidner C, Martienssen R, Cambareri EB, Aisner R, Carbon J, Sanmiguel P, Mauricio R, Cubas P, Vincent C, Coen E, Chen ZJ, Pikaard CS, Comai L, Lee HS, Richards E, Chandler V, Jacobsen S (2001) Translating the Histone Code. Science (80-) 293:1074-1081
Kang P, Mechref Y, Kyselova Z, Goetz JA, Novotny MV (2007) Comparative glycomic mapping through quantitative permethylation and stable-isotope labeling. Anal Chem 79:6064-6073. https://doi.org/10.1021/ac062098r
Karp NA, Lilley KS (2007) Design and analysis issues in quantitative proteomics studies. Proteomics. https://doi.org/10.1002/pmic.200700683
Kito K, Ito T (2008) Mass spectrometry-based approaches toward absolute quantitative proteomics. Curr Genomics 9:263-274. https://doi.org/10.2174/138920208784533647
Kito K, Ota K, Fujita T, Ito T (2007) A synthetic approach toward accurate mass spectrometric quantification of component stoichiometry of multiprotein complexes. J Proteome Res 6:792-800. https://doi.org/10.1021/pr060447s
Krüger M, Moser M, Ussar S, Thievessen I, Luber CA, Forner F, Schmidt S, Zanivan S, Fässler R, Mann M (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134:353-364. https://doi.org/10.1016/j.cell.2008.05.033
Kusebauch U, Campbell DS, Deutsch EW, Chu CS, Spicer DA, Brusniak MY, Slagel J, Sun Z, Stevens J, Grimes B, Shteynberg D, Hoopmann MR, Blattmann P, Ratushny AV, Rinner O, Picotti P, Carapito C, Huang CY, Kapousouz M, Lam H, Tran T, Demir E, Aitchison JD, Sander C, Hood L, Aebersold R, Moritz RL (2016) Human SRMAtlas: a resource of targeted assays to quantify the complete human proteome. Cell 166:766-778. https://doi.org/10.1016/j. cell.2016.06.041
Kuzyk MA, Smith D, Yang J, Cross TJ, Jackson AM, Hardie DB, Anderson NL, Borchers CH (2009) Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol Cell Proteomics 8:1860-1877. https://doi.org/10.1074/mcp.M800540-MCP200
Lange V, Picotti P, Domon B, Aebersold R (2008) Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol. 4:222. https://doi.org/10.1038/msb.2008.61
Laskay UA, Lobas AA, Srzentic K, Gorshkov MV, Tsybin YO (2013) Proteome digestion specificity analysis for rational design of extended bottom-up and middle-down proteomics experiments. J Proteome Res 12(12):5558-5569. https://doi.org/10.1021/pr400522h
Law KP, Lim YP (2013) Recent advances in mass spectrometry: data independent analysis and hyper reaction monitoring. Expert Rev Proteomics 10:551-566. https://doi.org/10.1586/ 14789450.2013.858022
Lebert D, Louwagie M, Goetze S, Picard G, Ossola R, Duquesne C, Basler K, Ferro M, Rinner O, Aebersold R, Garin JJ, Mouz N, Brunner E, Brun V (2015) DIGESTIF: a universal quality standard for the control of bottom-up proteomics experiments. J Proteome Res 14:787-803. https://doi.org/10.1021/pr500834z
Leroy B, Rosier C, Erculisse V, Leys N, Mergeay M, Wattiez R (2010) Differential proteomic analysis using isotope-coded protein-labeling strategies: comparison, improvements and application to simulated microgravity effect on Cupriavidus metallidurans CH34. Proteomics 10:2281-2291. https://doi.org/10.1002/pmic.200900286
Li J, Steen H, Gygi SP (2003) Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents: the yeast salinity stress response. Mol Cell Proteomics 2:1198-1204. https://doi.org/ 10.1074/mcp.M300070-MCP200
Li J, Rodnin MV, Ladokhin AS, Gross ML (2014) Hydrogen-deuterium exchange and mass spectrometry reveal the pH-dependent conformational changes of Diphtheria toxin T domain. Biochemistry 53:6849-6856. https://doi.org/10.1021/bi500893y
Li S, Zhang Y, Wang J, Yang Y, Miao C, Guo Y, Zhang Z, Cao Q, Shui W (2016) Combining untargeted and targeted proteomic strategies for discrimination and quantification of cashmere fibers. PLoS One 11:e0147044. https://doi.org/10.1371/journal.pone.0147044
Liang H-C, Lahert E, Pike I, Ward M (2015) Quantitation of protein post-translational modifications using isobaric tandem mass tags. Bioanalysis 7:383-400. https://doi.org/10.4155/bio.14. 296
Longuespée R, Fléron M, Pottier C, Quesada-Calvo F, Meuwis M-A, Baiwir D, Smargiasso N, Mazzucchelli G, De Pauw-Gillet M-C, Delvenne P, De Pauw E (2014) Tissue proteomics for the next decade? Towards a molecular dimension in histology. OMICS J Integr Biol 18:539-552. https://doi.org/10.1089/omi.2014.0033
Longuespée R, Alberts D, Pottier C, Smargiasso N, Mazzucchelli G, Baiwir D, Kriegsmann M, Herfs M, Kriegsmann J, Delvenne P, De Pauw E (2016) A laser microdissection-based workflow for FFPE tissue microproteomics: important considerations for small sample processing. Methods 104:154-162. https://doi.org/10.1016/j.ymeth.2015.12.008
Lottspeich F, Kellermann J (2011) ICPL labeling strategies for proteome research. In: Methods in molecular biology, pp 55-64
Lu P, Vogel C, Wang R, Yao X, Marcotte EM (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 25:117-124. https://doi.org/10.1038/nbt1270
Lv Y, Zhang S, Wang J, Hu Y (2016) Quantitative proteomic analysis of wheat seeds during artificial ageing and priming using the isobaric tandem mass tag labeling. PLoS One. https:// doi.org/10.1371/journal.pone.0162851
Ly A, Buck A, Balluff B, Sun N, Gorzolka K, Feuchtinger A, Janssen K-P, Kuppen PJK, van de Velde CJH, Weirich G, Erlmeier F, Langer R, Aubele M, Zitzelsberger H, McDonnell L, Aichler M, Walch A (2016) High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc 11:1428-1443. https:// doi.org/10.1038/nprot.2016.081
Maccarrone G, Lebar M, Martins-De-Souza D (2014) Brain quantitative proteomics combining gelcms and isotope-coded protein labeling (ICPL). In: Methods in molecular biology. pp 175-185
Mackay CL, Ramsahoye B, Burgess K, Cook K, Weidt S, Creanor J, Harrison D, Langridge-Smith P, Hupp T, Hayward L (2008) Sensitive, specific, and quantitative FTICR mass spectrometry of combinatorial post-translational modifications in intact histone H4. Anal Chem 80:4147-4153. https://doi.org/10.1021/ac702452d
MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, Kern R, Tabb DL, Liebler DC, MacCoss MJ (2010) Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26:966-968. https://doi.org/10. 1093/bioinformatics/btq054
Maes E, Cho WC, Baggerman G (2015) Translating clinical proteomics: the importance of study design. Expert Rev Proteomics 12:217-219. https://doi.org/10.1586/14789450.2015.1041512
Maes E, Kelchtermans P, Bittremieux W, De Grave K, Degroeve S, Hooyberghs J, Mertens I, Baggerman G, Ramon J, Laukens K, Martens L, Valkenborg D (2016) Designing biomedical proteomics experiments: state-of-the-art and future perspectives. Expert Rev Proteomics. https://doi.org/10.1586/14789450.2016.1172967
Magdeldin S, Yamamoto T (2012) Toward deciphering proteomes of formalin-fixed paraffinembedded (FFPE) tissues. Proteomics 12:1045-1058. https://doi.org/10.1002/pmic.201100550
Maile TM, Izrael-Tomasevic A, Cheung T, Guler GD, Tindell C, Masselot A, Liang J, Zhao F, Trojer P, Classon M, Arnott D (2015) Mass spectrometric quantification of histone posttranslational modifications by a hybrid chemical labeling method. Mol Cell Proteomics 14:1148-1158. https://doi.org/10.1074/mcp.O114.046573
Mallick P, Kuster B (2010) Proteomics: a pragmatic perspective. Nat Biotechnol 28:695-709. https://doi.org/10.1038/nbt.1658
Mann M (2014) Fifteen years of stable isotope labeling by amino acids in cell culture (SILAC). Methods Mol Biol 1188:1-7. https://doi.org/10.1007/978-1-4939-1142-4_1
Mann M, Kulak NA, Nagaraj N, Cox J (2013) The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell 49:583-590. https://doi.org/10.1016/j.molcel.2013.01.029
Martinez-Val A, Garcia F, Ximénez-Embún P, Ibarz N, Zarzuela E, Ruppen I, Mohammed S, Munoz J (2016) On the statistical significance of compressed ratios in isobaric labeling: a cross-platform comparison. J Proteome Res 15:3029-3038. https://doi.org/10.1021/acs. jproteome.6b00151
Mastroleo F, Van Houdt R, Leroy B, Benotmane MA, Janssen A, Mergeay M, Vanhavere F, Hendrickx L, Wattiez R, Leys N (2009) Experimental design and environmental parameters affect Rhodospirillum rubrum S1H response to space flight. ISME J 3:1402-1419. https://doi. org/10.1038/ismej.2009.74
May C, Brosseron F, Chartowski P, Meyer HE, Marcus K (2012) Differential proteome analysis using 2D-DIGE. In: Methods in molecular biology, pp 75-82
McAlister GC, Huttlin EL, Haas W, Ting L, Jedrychowski MP, Rogers JC, Kuhn K, Pike I, Grothe RA, Blethrow JD, Gygi SP (2012) Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. Anal Chem 84:7469-7478. https://doi.org/10.1021/ ac301572t
Mirzaei H, McBee JK, Watts J, Aebersold R (2008) Comparative evaluation of current peptide production platforms used in absolute quantification in proteomics. Mol Cell Proteomics 7:813-823. https://doi.org/10.1074/mcp.M700495-MCP200
Moradian A, Kalli A, Sweredoski MJ, Hess S (2014) The top-down, middle-down, and bottom-up mass spectrometry approaches for characterization of histone variants and their posttranslational modifications. Proteomics 14:489-497. https://doi.org/10.1002/pmic.201300256
Moritz B, Meyer HE (2003) Approaches for the quantification of protein concentration ratios. Proteomics 3:2208-2220. https://doi.org/10.1002/pmic.200300581
Mudaliar M, Tassi R, Thomas FC, McNeilly TN, Weidt SK, McLaughlin M, Wilson D, Burchmore R, Herzyk P, Eckersall PD, Zadoks RN (2016) Mastitomics, the integrated omics of bovine milk in an experimental model of Streptococcus uberis mastitis: 2. Label-free relative quantitative proteomics. Mol BioSyst 12:2748-2761. https://doi.org/10.1039/C6MB00290K
Muntel J, Xuan Y, Berger ST, Reiter L, Bachur R, Kentsis A, Steen H (2015) Advancing urinary protein biomarker discovery by data-independent acquisition on a quadrupole-orbitrap mass spectrometer. J Proteome Res 14:4752-4762. https://doi.org/10.1021/acs.jproteome.5b00826
MustafaÜnlü, Morgan ME, Minden JS (1997) Difference gel electrophoresis. A single gel method for detecting changes in protein extracts. Electrophoresis 18:2071-2077. https://doi.org/10. 1002/elps.1150181133
Neely BA, Soper JL, Gulland FMD, Bell PD, Kindy M, Arthur JM, Janech MG (2015) Proteomic analysis of cerebrospinal fluid in California sea lions (Zalophus californianus) with domoic acid toxicosis identifies proteins associated with neurodegeneration. Proteomics 15:4051-4063. https://doi.org/10.1002/pmic.201500167
Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, Van Sluyter SC, Haynes PA (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11:535-553. https://doi.org/10.1002/pmic.201000553
Nesvizhskii AI, Vitek O, Aebersold R (2007) Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Methods 4:787-797. https://doi.org/10.1038/nmeth1088
Nikolov M, Schmidt C, Urlaub H (2012) Quantitative mass spectrometry-based proteomics: an overview. In: Methods in molecular biology, pp 85-100
NonLinear Dynamics Progenesis QI for Proteomics (2017) http://www.nonlinear.com/progenesis/ qi-for-proteomics/
Oberg AL, Vitek O (2009) Statistical design of quantitative mass spectrometry-based proteomic experiments. J Proteome Res 8:2144-2156. https://doi.org/10.1021/pr8010099
Oda Y, Huang K, Cross FR, Cowburn D, Chait BT (1999) Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci USA 96:6591-6596. https://doi.org/10.1073/pnas.96.12.6591
Önder Ö, Sidoli S, Carroll M, Garcia BA (2015) Progress in epigenetic histone modification analysis by mass spectrometry for clinical investigations. Expert Rev Proteomics 12:499-517. https://doi.org/10.1586/14789450.2015.1084231
Ong S-E (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376-386. https://doi.org/ 10.1074/mcp.M200025-MCP200
Ong S-E, Mann M (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1:2650-2660. https://doi.org/10.1038/nprot.2006.427
Ori A, Iskar M, Buczak K, Kastritis P, Parca L, Andrés-Pons A, Singer S, Bork P, Beck M (2016) Spatiotemporal variation of mammalian protein complex stoichiometries. Genome Biol 17:47. https://doi.org/10.1186/s13059-016-0912-5
Ow SY, Salim M, Noirel J, Evans C, Rehman I, Wright PC (2009) iTRAQ underestimation in simple and complex mixtures: "the good, the bad and the ugly.". J Proteome Res 8:5347-5355. https://doi.org/10.1021/pr900634c
Pan S, Tamura Y, Chen R, May D, McIntosh MW, Brentnall TA (2012) Large-scale quantitative glycoproteomics analysis of site-specific glycosylation occupancy. Mol BioSyst 8:2850-2856. https://doi.org/10.1039/c2mb25268f
Pan S, Chen R, Tamura Y, Crispin DA, Lai LA, May DH, Mcintosh MW, Goodlett DR, Brentnall TA (2014) Quantitative glycoproteomics analysis reveals changes in N-glycosylation level associated with pancreatic ductal adenocarcinoma. J Proteome Res:1293_1306
Paradela A, Marcilla M, Navajas R, Ferreira L, Ramos-Fernandez A, Fernández M, Mariscotti JF, Portillo FG, Albar JP (2010) Evaluation of isotope-coded protein labeling (ICPL) in the quantitative analysis of complex proteomes. Talanta 80:1496-1502. https://doi.org/10.1016/j. talanta.2009.06.083
Paulovich AG, Whiteaker JR, Hoofnagle AN, Wang P (2008) The interface between biomarker discovery and clinical validation: the tar pit of the protein biomarker pipeline. Proteomics Clin Appl 2:1386-1402. https://doi.org/10.1002/prca.200780174
Percy AJ, Yang J, Hardie DB, Chambers AG, Tamura-Wells J, Borchers CH (2015) Precise quantitation of 136 urinary proteins by LC/MRM-MS using stable isotope labeled peptides as internal standards for biomarker discovery and/or verification studies. Methods 81:24-33. https://doi.org/10.1016/j.ymeth.2015.04.001
Perez-Patiño C, Barranco I, Parrilla I, Valero ML, Martinez EA, Rodriguez-Martinez H, Roca J (2016) Characterization of the porcine seminal plasma proteome comparing ejaculate portions. J Proteomics 142:15-23. https://doi.org/10.1016/j.jprot.2016.04.026
Pesavento JJ, Bullock CR, LeDuc RD, Mizzen CA, Kelleher NL (2008) Combinatorial modification of human histone H4 quantitated by two-dimensional liquid chromatography coupled with top down mass spectrometry. J Biol Chem 283:14927-14937. https://doi.org/10.1074/jbc.M709796200
Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9:555-566. https://doi.org/10.1038/nmeth.2015
Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138:795-806. https://doi.org/ 10.1016/j.cell.2009.05.051
Picotti P, Rinner O, Stallmach R, Dautel F, Farrah T, Domon B, Wenschuh H, Aebersold R (2010) High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods 7:43-46. https://doi.org/10.1038/nmeth.1408
Piovesana S, Capriotti AL, Caruso G, Cavaliere C, La Barbera G, Zenezini Chiozzi R, Laganà A (2016) Labeling and label free shotgun proteomics approaches to characterize muscle tissue from farmed and wild gilthead sea bream (Sparus aurata). J Chromatogr A 1428:193-201. https://doi.org/10.1016/j.chroma.2015.07.049
Plomp R, Hensbergen PJ, Rombouts Y, Zauner G, Dragan I, Koeleman CAM, Deelder AM, Wuhrer M (2014) Site-specific N-glycosylation analysis of human immunoglobulin e. J Proteome Res 13:536-546. https://doi.org/10.1021/pr400714w
PolyQuant QconCATs or synthetic/AQUA peptides? (2017) http://www.polyquant.com/qconcattechnology/ qconcats-or-syntheticaqua-peptides/
Pratt JM, Simpson DM, Doherty MK, Rivers J, Gaskell SJ, Beynon RJ (2006) Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat Protoc 1:1029-1043. https://doi.org/10.1038/nprot.2006.129
Prentice BM, Caprioli RM (2016) The need for speed in matrix-assisted laser desorption/ionization imaging mass spectrometry. Postdoc J 4:3-13
Raijmakers R, Berkers CR, de Jong A, Ovaa H, Heck AJR, Mohammed S (2008) Automated online sequential isotope labeling for protein quantitation applied to proteasome tissue-specific diversity. Mol Cell Proteomics 7:1755-1762. https://doi.org/10.1074/mcp.M800093-MCP200
Rainczuk A, Condina M, Pelzing M, Dolman S, Rao J, Fairweather N, Jobling T, Stephens AN (2013) The utility of isotope-coded protein labeling for prioritization of proteins found in ovarian cancer patient urine. J Proteome Res 12:4074-4088. https://doi.org/10.1021/pr400618v
Ramisetty SR, Washburn MP (2011) Unraveling the dynamics of protein interactions with quantitative mass spectrometry. Crit Rev Biochem Mol Biol 46:216-228. https://doi.org/10. 3109/10409238.2011.567244
Rauniyar N, McClatchy DB, Yates JR (2013) Stable isotope labeling of mammals (SILAM) for in vivo quantitative proteomic analysis. Methods 61:260-268. https://doi.org/10.1016/j.ymeth. 2013.03.008
Reiter L, Rinner O, Picotti P, Hüttenhain R, Beck M, Brusniak M-Y, Hengartner MO, Aebersold R (2011) mProphet: automated data processing and statistical validation for large-scale SRM experiments. Nat Methods 8(5):430. https://doi.org/10.1038/nmeth.1584
Rivers J, Simpson DM, Robertson DHL, Gaskell SJ, Beynon RJ (2007) Absolute multiplexed quantitative analysis of protein expression during muscle development using QconCAT. Mol Cell Proteomics 6:1416-1427. https://doi.org/10.1074/mcp.M600456-MCP200
Rose CM, Isasa M, Ordureau A, Prado MA, Beausoleil SA, Jedrychowski MP, Finley DJ, Harper JW, Gygi SP (2016) Highly multiplexed quantitative mass spectrometry analysis of ubiquitylomes. Cell Syst 3:395-403. https://doi.org/10.1016/j.cels.2016.08.009
Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using aminereactive isobaric tagging reagents. Mol Cell Proteomics 3:1154-1169. https://doi.org/10.1074/ mcp.M400129-MCP200
Rudolph JD, de Graauw M, van de Water B, Geiger T, Sharan R (2016) Elucidation of signaling pathways from large-scale phosphoproteomic data using protein interaction networks. Cell Syst 3:585-593. https://doi.org/10.1016/j.cels.2016.11.005
Ruhaak LR, Lebrilla CB (2015) Applications of multiple reaction monitoring to clinical glycomics. Chromatographia 78:335-342. https://doi.org/10.1007/s10337-014-2783-9
Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23:94-101. https://doi.org/10.1038/nbt1046
Russell MR, Lilley KS (2012) Pipeline to assess the greatest source of technical variance in quantitative proteomics using metabolic labelling. J Proteomics. https://doi.org/10.1016/j. jprot.2012.09.020
Sanda M, Pompach P, Brnakova Z, Wu J, Makambi K, Goldman R (2013) Quantitative liquid chromatography-mass spectrometry-multiple reaction monitoring (LC-MS-MRM) analysis of site-specific glycoforms of haptoglobin in liver disease. Mol Cell Proteomics 12:1294-1305. https://doi.org/10.1074/mcp.M112.023325
Sap KA, Demmers JAA (2012) Labeling methods in mass spectrometry based quantitative proteomics. In: Integrative proteomics. InTech, pp 111-132
Scheerlinck E, Dhaenens M, Van Soom A, Peelman L, De Sutter P, Van Steendam K, Deforce D (2015) Minimizing technical variation during sample preparation prior to label-free quantitative mass spectrometry. Anal Biochem 490:14-19. https://doi.org/10.1016/j.ab.2015.08.018
Schmidt A, Kellermann J, Lottspeich F (2005) A novel strategy for quantitative proteomics using isotope-coded protein labels. Proteomics 5:4-15. https://doi.org/10.1002/pmic.200400873
Shao S, Guo T, Koh CC, Gillessen S, Joerger M, Jochum W, Aebersold R (2015) Minimal sample requirement for highly multiplexed protein quantification in cell lines and tissues by PCT-SWATH mass spectrometry. Proteomics 15:3711-3721. https://doi.org/10.1002/pmic. 201500161
Shi S-R, Liu C, Balgley BM, Lee C, Taylor CR (2006) Protein extraction from formalin-fixed, paraffin-embedded tissue sections: quality evaluation by mass spectrometry. J Histochem Cytochem 54:739-743. https://doi.org/10.1369/jhc.5B6851.2006
Shi X, Li C, Cao M, Xu X, Zhou G, Xiong YL (2016) Comparative proteomic analysis of longissimus dorsi muscle in immuno- and surgically castrated male pigs. Food Chem 199:885-892. https://doi.org/10.1016/j.foodchem.2015.11.059
Shortreed MR, Frey BL, Scalf M, Knoener RA, Cesnik AJ, Smith LM (2016) Elucidating proteoform families from proteoform intact-mass and lysine-count measurements. J Proteome Res 15:1213-1221. https://doi.org/10.1021/acs.jproteome.5b01090
Sidoli S, Lin S, Karch KR, Garcia BA (2015) Bottom-up and middle-down proteomics have comparable accuracies in defining histone post-translational modification relative abundance and stoichiometry. Anal Chem 87:3129-3133. https://doi.org/10.1021/acs.analchem.5b00072
Singh S, Springer M, Steen J, Kirschner MW, Steen H (2009) FLEXIQuant: a novel tool for the absolute quantification of proteins, and the simultaneous identification and quantification of potentially modified peptides. J Proteome Res 8:2201-2210. https://doi.org/10.1021/pr800654s
Smith RD, Veenstra TD (2003) Proteome characterization and proteomics, volume 65. Academic Press
Soares R, Franco C, Pires E, Ventosa M, Palhinhas R, Koci K, Martinho de Almeida A, Varela Coelho A (2012) Mass spectrometry and animal science: protein identification strategies and particularities of farm animal species. J Proteomics 75:4190-4206. https://doi.org/10.1016/j. jprot.2012.04.009
Song E, Pyreddy S, Mechref Y (2012) Quantification of glycopeptides by multiple reaction monitoring liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 26:1941-1954. https://doi.org/10.1002/rcm.6290
Stella R, Biancotto G, Arrigoni G, Barrucci F, Angeletti R, James P (2015) Proteomics for the detection of indirect markers of steroids treatment in bovine muscle. Proteomics 15:2332-2341. https://doi.org/10.1002/pmic.201400468
Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41-45. https://doi.org/10.1038/47412
Sturm M, Bertsch A, Gröpl C, Hildebrandt A, Hussong R, Lange E, Pfeifer N, Schulz-Trieglaff O, Zerck A, Reinert K, Kohlbacher O (2008) OpenMS - an open-source software framework for mass spectrometry. BMC Bioinf 9:163. https://doi.org/10.1186/1471-2105-9-163
Sugiura Y, Setou M (2010) Matrix-assisted laser desorption/ionization and nanoparticle-based imaging mass spectrometry for small metabolites: a practical protocol. In: Rubakhin SS, Sweedler JV (eds) Mass spectrometry imaging: principles and protocols. Humana Press, Totowa, NJ, pp 173-195
Sury MD, Chen J-X, Selbach M (2010) The SILAC fly allows for accurate protein quantification in vivo. Mol Cell Proteomics 9:2173-2183. https://doi.org/10.1074/mcp.M110.000323
Svinkina T, Gu H, Silva JC, Mertins P, Qiao J, Fereshetian S, Jaffe JD, Kuhn E, Udeshi ND, Carr SA (2015) Deep, quantitative coverage of the lysine acetylome using novel anti-acetyl-lysine antibodies and an optimized proteomic workflow. Mol Cell Proteomics 14:2429-2440. https:// doi.org/10.1074/mcp.O114.047555
Sweredoski MJ, Moradian A, Raedle M, Franco C, Hess S (2015) High resolution parallel reaction monitoring with electron transfer dissociation for middle-down proteomics. Anal Chem 87:8360-8366. https://doi.org/10.1021/acs.analchem.5b01542
Synowsky SA, van Wijk M, Raijmakers R, Heck AJR (2009) Comparative multiplexed mass spectrometric analyses of endogenously expressed yeast nuclear and cytoplasmic exosomes. J Mol Biol 385:1300-1313. https://doi.org/10.1016/j.jmb.2008.11.011
Tang X, Meng Q, Gao J, Zhang S, Zhang H, Zhang M (2015) Label-free quantitative analysis of changes in Broiler liver proteins under heat stress using SWATH-MS technology. Sci Rep 5:15119. https://doi.org/10.1038/srep15119
Tao S, Orlando R (2014) A novel method for relative quantitation of n-glycans by isotopic labeling using 18O-water. J Biomol Tech 25:111-117. https://doi.org/10.7171/jbt.14-2504-003
Thermo Scientific Peptides for Targeted Quantitation (2017) https://www.thermofisher.com/be/ en/home/life-science/protein-biology/peptides-proteins/custom-peptide-synthesis-services/ peptides-targeted-quantitation.html
Thompson A, Scha R, Kuhn K, Kienle S, Schwarz J, Schmidt N, Neumann T, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895-1904. https://doi.org/10.1021/ac0262560
Tian Y, Bova GS, Zhang H (2011) Quantitative glycoproteomic analysis of optimal cutting temperature-embedded frozen tissues identifying glycoproteins associated with aggressive prostate cancer. Anal Chem 83:7013-7019. https://doi.org/10.1021/ac200815q
Ting L, Rad R, Gygi SP, Haas W (2011) MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods 8:937-940. https://doi.org/10.1038/nmeth.1714
Toby TK, Fornelli L, Kelleher NL (2016) Progress in top-down proteomics and the analysis of proteoforms. Annu Rev Anal Chem 9:499-519. https://doi.org/10.1146/annurev-anchem-071015-041550
Tsou C-C, Avtonomov D, Larsen B, Tucholska M, Choi H, Gingras A-C, Nesvizhskii AI (2015) DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat Methods 12:258-264, 7 p following 264. https://doi.org/10.1038/nmeth.3255
Tsutsui Y, Wintrode PL (2007) Hydrogen/deuterium exchange-mass spectrometry: a powerful tool for probing protein structure, dynamics and interactions. Curr Med Chem 14:2344-2358
Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometrybased shotgun proteomics. Nat Protoc 11:2301-2319. https://doi.org/10.1038/nprot.2016.136
Van Hoof D, Pinkse MW, Oostwaard DW, Mummery CL, Heck AJ, Krijgsveld J (2007) An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics. Nat Methods 4:677-678
Villanueva J, Carrascal M, Abian J (2014) Isotope dilution mass spectrometry for absolute quantification in proteomics: Concepts and strategies. J Proteomics 96:184-199. https://doi. org/10.1016/j.jprot.2013.11.004
von Stechow L, Francavilla C, Olsen JV (2015) Recent findings and technological advances in phosphoproteomics for cells and tissues. Expert Rev Proteomics 12:469-487. https://doi.org/ 10.1586/14789450.2015.1078730
Wales TE, Engen JR (2006) Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom Rev 25:158-170. https://doi.org/10.1002/mas.20064
Wang G, WW W, Zeng W, Chou C-L, Shen R-F (2006) Label-free protein quantification using LC-coupled ion trap or FT mass spectrometry: reproducibility, linearity, and application with complex proteomes. J Proteome Res 5:1214-1223. https://doi.org/10.1021/pr050406g
Wang C, Zhang P, Jin W, Li L, Qiang S, Zhang Y, Huang L, Wang Z (2017) Quantitative O-glycomics based on improvement of the one-pot method for nonreductive O-glycan release and simultaneous stable isotope labeling with 1-(d0/d5)phenyl-3-methyl-5-pyrazolone followed by mass spectrometric analysis. J Proteomics 150:18-30. https://doi.org/10.1016/j. jprot.2016.08.012
Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19:242-247. https://doi. org/10.1038/85686
Werner T, Becher I, Sweetman G, Doce C, Savitski MM, Bantscheff M (2012) High-resolution enabled TMT 8-plexing. Anal Chem 84:7188-7194. https://doi.org/10.1021/ac301553x
Werner T, Sweetman G, Savitski MF, Mathieson T, Bantscheff M, Savitski MM (2014) Ion coalescence of neutron encoded TMT 10-plex reporter ions. Anal Chem 86:3594-3601. https://doi.org/10.1021/ac500140s
Westbrook JA, Noirel J, Brown JE, Wright PC, Evans CA (2015) Quantitation with chemical tagging reagents in biomarker studies. Proteomics Clin Appl 9:295-300. https://doi.org/10. 1002/prca.201400120
Wiesner J, Premsler T, Sickmann A (2008) Application of electron transfer dissociation (ETD) for the analysis of posttranslational modifications. Proteomics 8:4466-4483. https://doi.org/10. 1002/pmic.200800329
Wiśniewski JR, Ostasiewicz P, Mann M (2011) High recovery FASP applied to the proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues retrieves known colon cancer markers. J Proteome Res 10:3040-3049. https://doi.org/10.1021/pr200019m
Wu Y, Wang F, Liu Z, Qin H, Song C, Huang J, Bian Y, Wei X, Dong J, Zou H (2014) Five-plex isotope dimethyl labeling for quantitative proteomics. Chem Commun 50:1708. https://doi.org/ 10.1039/c3cc47998f
Xiao K, Yu F, Tian Z (2017) Top-down protein identification using isotopic envelope fingerprinting. J Proteomics 152:41-47. https://doi.org/10.1016/j.jprot.2016.10.010
Xie F, Liu T, Qian W-J, Petyuk VA, Smith RD (2011) Liquid chromatography-mass spectrometrybased quantitative proteomics. J Biol Chem 286:25443-25449. https://doi.org/10.1074/jbc.R110.199703
Xu BJ (2010) Combining laser capture microdissection and proteomics: methodologies and clinical applications. Proteomics Clin Appl 4:116-123. https://doi.org/10.1002/prca.200900138
Yang S, Yuan W, Yang W, Zhou J, Harlan R, Edwards J, Li S, Zhang H (2013) Glycan analysis by isobaric aldehyde reactive tags and mass spectrometry. Anal Chem 85:8188-8195. https://doi. org/10.1021/ac401226d
Yang S, Wang M, Chen L, Yin B, Song G, Turko IV, Phinney KW, Betenbaugh MJ, Zhang H, Li S (2015a) QUANTITY: an isobaric tag for quantitative glycomics. Sci Rep 5:17585. https://doi. org/10.1038/srep17585
Yang Y, Zheng N, Zhao X, Zhang Y, Han R, Ma L, Zhao S, Li S, Guo T, Wang J (2015b) Proteomic characterization and comparison of mammalian milk fat globule proteomes by iTRAQ analysis. J Proteomics 116:34-43. https://doi.org/10.1016/j.jprot.2014.12.017
Yang M, Cong M, Peng X, Wu J, Wu R, Liu B, Ye W, Yue X (2016) Quantitative proteomic analysis of milk fat globule membrane (MFGM) proteins in human and bovine colostrum and mature milk samples through iTRAQ labeling. Food Funct 7:2438-2450. https://doi.org/10. 1039/c6fo00083e
Ye X, Luke B, Andresson T, Blonder J (2009) 18O stable isotope labeling in MS-based proteomics. Brief Funct Genomic Proteomic 8:136-144. https://doi.org/10.1093/bfgp/eln055
Ye H, Boyne MT, Buhse LF, Hill J (2013) Direct approach for qualitative and quantitative characterization of glycoproteins using tandem mass tags and an LTQ orbitrap XL electron transfer dissociation hybrid mass spectrometer. Anal Chem 85:1531-1539. https://doi.org/10. 1021/ac3026465
Zeiler M, Straube WL, Lundberg E, Uhlen M, Mann M (2012) A protein epitope signature tag (PrEST) library allows SILAC-based absolute quantification and multiplexed determination of protein copy numbers in cell lines. Mol Cell Proteomics 11:O111.009613-O111.009613. https://doi.org/10.1074/mcp.O111.009613
Zhang R, Sioma CS, Wang S, Regnier FE (2001) Fractionation of isotopically labeled peptides in quantitative proteomics. Anal Chem 73:5142-5149. https://doi.org/10.1021/ac010583a
Zhang B, VerBerkmoes NC, Langston MA, Uberbacher E, Hettich RL, Samatova NF (2006) Detecting differential and correlated protein expression in label-free shotgun proteomics. J Proteome Res 5:2909-2918. https://doi.org/10.1021/pr0600273
Zhang H, Wang Z, Stupak J, Ghribi O, Geiger JD, Liu QY, Li J (2012a) Targeted glycomics by selected reaction monitoring for highly sensitive glycan compositional analysis. Proteomics 12:2510-2522. https://doi.org/10.1002/pmic.201100567
Zhang Y, Yin H, Lu H (2012b) Recent progress in quantitative glycoproteomics. Glycoconj J 29:249-258. https://doi.org/10.1007/s10719-012-9398-x
Zhang C, Ye Z, Xue P, Shu Q, Zhou Y, Ji Y, Fu Y, Wang J, Yang F (2016) Evaluation of different N-glycopeptide enrichment methods for N-glycosylation sites mapping in mouse brain. J Proteome Res 15:2960-2968. https://doi.org/10.1021/acs.jproteome.6b00098
Zhong X, Navare AT, Chavez JD, Eng JK, Schweppe DK, Bruce JE (2017) Large-scale and targeted quantitative cross-linking MS using isotope-labeled protein interaction reporter (PIR) cross-linkers. J Proteome Res 16:720-727. https://doi.org/10.1021/acs.jproteome.6b00752
Zhou H, Low TY, Hennrich ML, van der Toorn H, Schwend T, Zou H, Mohammed S, Heck AJR (2011) Enhancing the identification of phosphopeptides from putative basophilic kinase substrates using Ti (IV) based IMAC enrichment. Mol Cell Proteomics 10:M110 006452. https:// doi.org/10.1074/mcp.M110.006452
Zhou S, Hu Y, Desantos-Garcia JL, Mechref Y (2015) Quantitation of permethylated n-glycans through multiple-reaction monitoring (MRM) LC-MS/MS. J Am Soc Mass Spectrom 26:596-603. https://doi.org/10.1007/s13361-014-1054-1
Zhou S, Hu Y, Veillon L, Snovida SI, Rogers JC, Saba J, Mechref Y (2016) Quantitative LC-MS/ MS glycomic analysis of biological samples using aminoxyTMT. Anal Chem 88:7515-7522. https://doi.org/10.1021/acs.analchem.6b00465
Zhu W, Smith JW, Huang C-MM (2010) Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol 2010:840518. https://doi.org/10.1155/2010/840518
Zinn N, Winter D, Lehmann WD (2010) Recombinant isotope labeled and selenium quantified proteins for absolute protein quantification. Anal Chem 82:2334-2340. https://doi.org/10. 1021/ac9025412
Zougman A, Nagaraj N, Mann M, Wiśniewski JR (2009) Universal sample preparation method for proteome analysis. Nat Methods 6:359-362. https://doi.org/10.1038/nmeth.1322