Mertens, P.; Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
Boman, Romain ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Département d'aérospatiale et mécanique
Dickheuer, S.; Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
Krasikov, Y.; Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
Krimmer, A.; Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
Leichtle, D.; Karlsruher Institut für Technologie (KIT), Institut für Neutronenphysik und Reaktortechnik (INR), Eggenstein-Leopoldshafen, 76344, Germany
Liegeois, Kim ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational and stochastic modeling
Linsmeier, C.; Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
Litnovsky, A.; Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
Marchuk, O.; Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
Rasinski, M.; Institut für Energie- und Klimaforschung – Plasmaphysik, Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
De Bock, M.; ITER Organization, St.Paul-lez-Durance, 13067, France
Language :
English
Title :
On the use of rhodium mirrors for optical diagnostics in ITER
Coblentz, W.W., Stair, R., Note on the Spectral Reflectivity of Rhodium. J. Res. Natl. Bureau Stand. 22 (1939), 93–95 [RP1168].
Orlinski, D., Bardamid, A.F., Konovalov, V., et al. Rhodium as the promising material for the first mirrors of laser and spectroscopy methods of plasma diagnostics in a fusion reactor. Prob. Atom. Sci. Tech. 3 Ser.: Plasma Phys. 5 (2000), 67–69 [UDC 533.9].
Orsitto, F.P., Del Bugaro, D., DiFino, M., et al. Optical characterization of plasma facing mirrors for a Thomson scattering system of a burning plasma experiment. Rev. Sci. Instrum. 72 (2001), 540–544.
Joanny, M., Travère, J.M., Salasca, S., et al. Achievements on engineering and manufacturing of ITER first-mirror mock-ups. IEEE Trans. Plasma Sci. 40 (2012), 692–696.
Rubel, M., Ivanova, D., Coad, P.J.P., et al. Overview of the second stage in the comprehensive mirrors test in JET. Phys. Scr., T145, 2011 014070 (6 pp.).
Ivanova, D., Rubel, M., Widdowson, A., et al. An overview of the comprehensive First Mirror Test in JET with ITER-like wall. Phys. Scr., T159, 2014 014011 (10 pp.).
Marot, L., Arnoux, G., Huber, A., et al. Optical coatings as mirrors for optical diagnostics. J. Coat. Sci Tech. 2 (2015), 72–78.
Litnovsky, A., Voitsenya, V.S., Reichle, R., et al. Diagnostic mirrors for ITER: research in the frame of International Tokamak Physics Activity. 27th Fusion Energy Conference, Ahmedabad, 2018 accepted for publication in Nucl. Fusion.
A. Krimmer, I. Balboa, N.J. Conway et al. Design Status of the ITER Core CXRS Diagnostic Setup, Proc. 30th SOFT (this conference), Fusion Eng. Des., in press, https://doi.org/10.1016/j.fusengdes.2018.12.026.
Ph. Mertens, The core-plasma CXRS diagnostic for ITER – an introduction to the current design, Proc. 16th Ettore Majorana School on Diagnostics and Technology Developments, Journal of Fusion Energy, Springer Science+Business Media, LLC, part of Springer Nature (2018) https://doi.org/10.1007/s10894-018-0202-1.
Kotov, V., Engineering estimates of impurity fluxes on the ITER port plugs. Nucl. Fusion, 56, 2016 106027 (11 pp.).
Ph. Mertens, Baseline for the First Mirror of the core CXRS diagnostic: Materials, Contamination and Cleaning, ITPA-31 (Nov. 2016) Pres. No. 10-02.
Sections 4&12: properties of the elements & properties of solids. Lide, D.R., (eds.) Handbook of Chemistry and Physics, 79th ed., 1998–1999, CRC Press.
Weaver, J.H., Frederikse, H.P.R., Optical properties of metals and semiconductors. Lide, D.R., (eds.) Handbook of Chemistry and Physics, 79th ed., 1998–1999, CRC Press, 12–141.
Weaver, J.H., Optical properties of Rh, Pd, Ir and Pt. Phys. Rev. B 11 (1975), 1416–1425.
Almazán, R.M., Pereira, A., et al. Internal F4E Report., 2017 F4E_D_28KEAR.
Gestis Substance Database, information system on hazardous substances, under www.dguv.de/ifa/gestis-database.
Krasikov, Yu., Panin, A., Litnovsky, A., Mertens, Ph., Schrader, M., Specific design and structural issues of single crystalline first mirrors for diagnostics. Fusion Eng. Des. 124 (2017), 548–552.
Krasikov, Y., Private Communication. 2018.
Voitsenya, V.S., Balden, M., Bardamid, A.F., et al. Development of surface relief on polycrystalline metals due to sputtering. Nucl. Instr. Methods Phys. Res. B 302 (2013), 32–39.
Moser, L., Marot, L., Steiner, R., et al. Plasma cleaning of ITER first mirrors. Phys. Scr., T170, 2017 014047 (7 pp.).
Carruthers, J.R., Crystal Growth from the melt. Hannay, N.B., (eds.) Treatise on Solid State Chemistry, Vol. 5 – Changes of State, 1975, Springer Science+Business Media.
Robinson, M.T., Theoretical aspects of monocrystal sputtering. Behrisch, R., (eds.) Sputtering by Particle Bombardment I, Topics in Applied Physics 47, 1981, Springer.
Snouse, T.W., Haughney, L.C., Sputtering of single-crystal copper. J. Appl. Phys. 37 (1966), 700–704.
Ogilvie, G.J., Sanders, J.V., Thomson, A.A., The bombardment of gold films by inert gas ions. J. Phys. Chem. Solids 24 (1963), 247–259.
Zdanuk, E.J., Wolsky, S.P., Sputtering of single crystal copper and aluminum with 20–600 eV argon ions. J. Appl. Phys. 36 (1965), 1683–1687.
Litnovsky, A., Krasikov, Yu., Rasinski, M., et al. First direct comparative test of single crystal rhodium and molybdenum mirrors for ITER diagnostics. Fusion Eng. Des. 123 (2017), 674–677.
A. Litnovsky, J. Peng, A. Kreter et al., Optimization of single crystal mirrors for ITER diagnostics, Fusion Eng. Des. (Proc. 30th SOFT) in the present volume.
Kreter, A., Brandt, C., Huber, A., et al. Linear plasma device PSI-2 for plasma-material interaction studies. Fusion Sci. Tech. 68 (2015), 8–14.
Tongson, L.L., Cooper, C.B., Low energy argon differential sputtering yields and thersholds along the <110> and <100> directions from the single crystal silver surfaces. Radiat. Effects 24 (1975), 187–193.
Laegreid, N., Wehner, G.K., Sputtering yields of metals for Ar+ and Ne+ ions with energies from 50 to 600 eV. J. Appl. Phys. 32 (1961), 365–369.
Garcia-Carrasco, A., Petersson, P., Rubel, M., et al. Plasma impact on diagnostic mirrors in JET. Nucl. Mater. Energy 12 (2017), 506–512.
Marchuk, O., Brandt, C., Pospieszczyk, A., et al. Emission of fast hydrogen atoms at a plasma-solid interface in a low density plasma containing noble gases. J. Phys. B: At. Mol. Opt. Phys., 51, 2018 025702 (19 pp.).
Dickheuer, S., Marchuk, O., Brandt, C., et al. In situ measurements of the spectral reflectance of metallic mirrors at the Hα line in a low density Ar-H plasma. Rev. Sci. Instrum., 89, 2018, 063112.
Dickheuer, S., Marchuk, O., Ertmer, S., et al. In situ measurement of the spectral reflectance of mirror-like metallic surfaces during plasma exposition. Nucl. Mat. and Energy 17 (2018), 302–306.
Ujihara, K., Reflectivity of metals at high temperatures. J. Appl. Phys. 43 (1972), 2376–2383.
Minissale, M., Pardanaud, C., Bisson, R., Gallais, L., The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experimental and theoretical study. J. Phys. D: Appl. Phys., 50, 2017 455601 (12 pp.).