Zhu, Yingying ; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 80 South Xueyuan Road, Haidian, Beijing, China, Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Passage des Déportés 2, Gembloux, Belgium
Yao, Y.; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 80 South Xueyuan Road, Haidian, Beijing, China
Shi, Z.; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 80 South Xueyuan Road, Haidian, Beijing, China, Laboratory of Biomass and Green Technologies, Gembloux Agro-Bio Tech, University of Liege, Passage des Déportés 2, Gembloux, Belgium
Everaert, Nadia ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Ingénierie des productions animales et nutrition
Ren, G.; Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS), 80 South Xueyuan Road, Haidian, Beijing, China
Language :
English
Title :
Synergistic effect of bioactive anticarcinogens from soybean on anti-proliferative activity in MDA-MB-231 and MCF-7 human breast cancer cells in vitro
Publication date :
2018
Journal title :
Molecules
eISSN :
1420-3049
Publisher :
MDPI AG
Volume :
23
Issue :
7
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Technical System Special of Modern Agricultural Industry [CARS-08-G20]; CAAS Nutrition and Function Innovation in Scientific and Technological Innovation Project; Hong Kong, Macao, and Taiwan Science and Technology Cooperation Program of China (2013DFH30050); Special Fund for Agro-scientific Research in the Public Interest (201403063); Agricultural Science and Technology Program for Innovation Team on Identification and excavation of Elite Crop Germplasm
Funders :
CAAS - Chinese Academy of Agricultural Sciences ULiège. GxABT - Liège Université. Gembloux Agro-Bio Tech
Messina, M.J.; Persky, V.; Setchell, K.D.; Barnes, S. Soy intake and cancer risk: A review of the in vitro and in vivo data. Nutr. Cancer 1994, 21, 113–131. [CrossRef] [PubMed]
Clubbs, E.A.; Bomser, J.A. Glycitein activates extracellular signal-regulated kinase via vascular endothelial growth factor receptor signaling in nontumorigenic (RWPE-1) prostate epithelial cells. J. Nutr. Biochem. 2007, 18, 525–532. [CrossRef] [PubMed]
Magee, P.J.; Raschke, M.; Steiner, C.; Duffin, J.G.; Pool-Zobel, B.L.; Jokela, T.; Rowland, I.R. Equol: A comparison of the effects of the racemic compound with that of the purified S-enantiomer on the growth, invasion, and DNA integrity of breast and prostate cells in vitro. Nutr. Cancer 2006, 54, 232–242. [CrossRef] [PubMed]
Awad, A.B.; Roy, R.; Fink, C.S. β-sitosterol, a plant sterol, induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells. Oncol. Rep. 2003, 10, 497–500. [CrossRef] [PubMed]
Kim, H.Y.; Yu, R.; Kim, J.S.; Kim, Y.K.; Sung, M.K. Antiproliferative crude soy saponin extract modulates the expression of IκBα, protein kinase C, and cyclooxygenase-2 in human colon cancer cells. Cancer Lett. 2004, 210, 1–6. [CrossRef] [PubMed]
Gladysheva, I.P.; Moroz, N.A.; Karmakova, T.A.; Nemtsova, E.R.; Yakubovskaya, R.I.; Larionova, N.I. Immunoconjugates of soybean Bowman-Birk protease inhibitor as targeted antitumor polymeric agents. J. Drug Target. 2001, 9, 303–316. [CrossRef] [PubMed]
Prashanta Kumar, P.; Subhadip, M.; Birendra, B.; Chandra Sekhar, B.; Sandeep, D.; Durgesh Nandini, D. Antitumor effect of soybean lectin mediated through reactive oxygen species-dependent pathway. Life Sci. 2014, 111, 27–35. [CrossRef]
Hsieh, C.C.; Martínez-Villaluenga, C.; de Lumen, B.O.; Hernández-Ledesma, B. Updating the research on the chemopreventive and therapeutic role of peptide lunasin. J. Sci. Food Agric. 2018, 98, 2070–2079. [CrossRef] [PubMed]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA-Cancer J. Clin. 2016, 66, 7–30. [CrossRef] [PubMed]
Yang, J.; Liu, R.H. Synergistic effect of apple extracts and quercetin 3-β-D-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro. J. Agric. Food Chem. 2009, 57, 8581–8586. [CrossRef] [PubMed]
Leung, H.W.; Wong, L.S.; Yue, G.G.L.; Tsang, J.Y.S.; Lin, Z.X.; Tse, G.M.K.; Lau, C.B.S. Differential proliferative responses of estrogenic Chinese herbal medicines in breast cancer cells of different molecular subtypes. Planta Med. 2016, 82, P808. [CrossRef]
Kaushik, S.; Shyam, H.; Sharma, R.; Balapure, A.K. Genistein synergizes centchroman action in human breast cancer cells. Indian J. Pharmacol. 2016, 48, 637. [CrossRef] [PubMed]
Henning, S.M.; Wang, P.; Heber, D. Chemopreventive effects of tea in prostate cancer: Green tea versus black tea. Mol. Nutr. Food Res. 2011, 55, 905–920. [CrossRef] [PubMed]
Wang, P.; Phan, T.; Gordon, D.; Chung, S.; Henning, S.M.; Vadgama, J.V. Arctigenin in combination with quercetin synergistically enhances the antiproliferative effect in prostate cancer cells. Mol. Nutr. Food Res. 2015, 59, 250–261. [CrossRef] [PubMed]
Szliszka, E.; Krol, W. Soy isoflavones augment the effect of trail-mediated apoptotic death in prostate cancer cells. Oncol. Rep. 2011, 26, 533–541. [CrossRef] [PubMed]
Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Narod, S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 2007, 13, 4429–4434. [CrossRef] [PubMed]
Hedlund, T.E.; Maroni, P.D.; Ferucci, P.G.; Dayton, R.; Barnes, S.; Jones, K.; Gray, K.J. Long-term dietary habits affect soy isoflavone metabolism and accumulation in prostatic fluid in caucasian men. J. Nutr. 2005, 135, 1400–1406. [CrossRef] [PubMed]
Chun, J.; Kim, Y.S. Platycodin D inhibits migration, invasion, and growth of MDA-MB-231 human breast cancer cells via suppression of EGFR-mediated Akt and MAPK pathways. Chem.-Biol. Interact. 2013, 205, 212–221. [CrossRef] [PubMed]
Chiang, P.C.; Lin, S.C.; Pan, S.L.; Kuo, C.H.; Tsai, I.L.; Kuo, M.T.; Guh, J.H. Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: A crucial role of AMPK and mTOR pathways. Biochem. Pharmacol. 2010, 79, 162–171. [CrossRef] [PubMed]
Høyer-Hansen, M.; J ttel, M. AMP-activated protein kinase: A universal regulator of autophagy? Autophagy 2007, 3, 381–383. [CrossRef] [PubMed]
Lin, Q.; Wang, Y.; Chen, D.; Sheng, X.; Liu, J.; Xiong, H. Cisplatin regulates cell autophagy in endometrial cancer cells via the pi3k/akt/mtor signalling pathway. Oncol. Lett. 2017, 13, 3567–3571. [CrossRef] [PubMed]
Hodge, D.R.; Hurt, E.M.; Farrar, W.L. The role of il-6 and stat3 in inflammation and cancer. Eur. J. Cancer Care 2005, 41, 2502–2512. [CrossRef] [PubMed]
Madhunapantula, S.V.; Sharma, A.; Robertson, G.P. Pras40 deregulates apoptosis in malignant melanoma. Cancer Res. 2007, 67, 3626. [CrossRef] [PubMed]
Luo, J. The role of glycogen synthase kinase 3β (gsk3β) in tumorigenesis and cancer chemotherapy. Cancer Lett. 2009, 273, 194–200. [CrossRef] [PubMed]
Hollstein, M.; Sidransky, D.; Vogelstein, B.; Harris, C.C. p53 mutations in human cancers. Science 1991, 253, 49–53. [CrossRef] [PubMed]
Cuenda, A.; Rousseau, S. p38 MAP-kinases pathway regulation, function and role in human diseases. BBA-Mol. Cell Res. 2007, 1773, 1358–1375. [CrossRef] [PubMed]
Felice, D.L.; Sun, J.; Liu, R.H. A modified methylene blue assay for accurate cell counting. J. Funct. Foods 2009, 1, 109–118. [CrossRef]
Kozlova, N.; Samoylenko, A.; Drobot, L.; Kietzmann, T. Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231. Mol. Carcinog. 2016, 55, 170–181. [CrossRef] [PubMed]
Tapia-Pizarro, A.; Argando a, F.; Palomino, W.A.; Devoto, L. Human chorionic gonadotropin (hCG) modulation of TIMP1 secretion by human endometrial stromal cells facilitates extravillous trophoblast invasion in vitro. Hum. Reprod. 2013, 28, 2215–2227. [CrossRef] [PubMed]
Zhu, Y.; Yao, Y.; Gao, Y.; Hu, Y.; Shi, Z.; Ren, G. Suppressive Effects of Barley β-Glucans with Different Molecular Weight on 3T3-L1 Adipocyte Differentiation. J. Food Sci. 2016, 81, H786–H793. [CrossRef] [PubMed]