[en] Starting from a remark about the computation of Kashiwara-Schapira's enhanced Laplace transform by using the Dolbeault complex of enhanced distributions, we explain how to obtain explicit holomorphic Paley-Wiener-type theorems. As an example, we get back some classical theorems due to Polya and Méril as limits of tempered Laplace-isomorphisms. In particular, we show how contour integrations naturally appear in this framework.
Disciplines :
Mathématiques
Auteur, co-auteur :
Dubussy, Christophe ; Université de Liège - ULiège > Département de mathématique > Analyse algébrique
Langue du document :
Anglais
Titre :
Enhanced Laplace transform and holomorphic Paley-Wiener-type theorems
Date de publication/diffusion :
11 juin 2019
Titre du périodique :
Rendiconti del Seminario Matematico della Università di Padova
ISSN :
0041-8994
eISSN :
2240-2926
Maison d'édition :
European Mathematical Society
Volume/Tome :
142
Pagination :
181-209
Peer reviewed :
Peer reviewed
Organisme subsidiant :
F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]
A. Auslender – M. Teboulle, Asymptotic cones and functions in optimization and variational inequalities, Springer Monographs in Mathematics. Springer-Verlag, New York, 2003.
C. A. Berenstein – R. Gay, Complex analysis and special topics in harmonic analysis, Springer-Verlag, New York, 1995.
A. D’Agnolo, On the Laplace transform for tempered holomorphic functions, Int. Math. Res. Not. IMRN 2014, no. 16, pp. 4587–4623.
A. D’Agnolo – M. Kashiwara, Riemann–Hilbert correspondence for holonomic D-modules, Publ. Math. Inst. Hautes Études Sci. 123 (2016), pp. 69–197.
E. Hille, Analytic function theory, vol. II, Second ed., Chelsea Publishing Company, New York, 1973.
L. Hörmander, On the division of distributions by polynomials, Ark. Mat. 3 (1958), pp. 555-568.
M. Kashiwara, The Riemann–Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 20 (1984), pp. 319–365.
M. Kashiwara, D-modules and microlocal calculus, Translated from the 2000 Japanese original by M. Saito, Translations of Mathematical Monographs, 217, Iwanami Series in Modern Mathematics, American Mathematical Society, Provi-dence, R.I., 2003.
M. Kashiwara, Riemann–Hilbert correspondence for irregular holonomic D-mod-ules, Jpn. J. Math. 11 (2016), no. 1, pp. 113–149.
M. Kashiwara – P. Schapira, Sheaves on manifold, with a chapter in French by Ch. Houzel, Grundlehren der Mathematischen Wissenschaften, 292. Springer-Verlag, Berlin etc., 1990.
M. Kashiwara – P. Schapira, Moderate and formal cohomology associated with constructible sheaves, Mém. Soc. Math. France (N.S.) 64 (1996), iv+76 pp.
M. Kashiwara – P. Schapira, Integral transforms with exponential kernels and Laplace transform, J. Amer. Math. Soc. 10 (1997), no. 4, pp. 939–972.
M. Kashiwara – P. Schapira, Ind-Sheaves, Astérisque 271 (2001), 136 pp.
M. Kashiwara – P. Schapira, Irregular holonomic kernels and Laplace transform, Selecta Math. (N.S.) 22 (2016), no. 1, pp. 55–109.
S. Łojasiewicz, Sur le problème de la division, Studia Math. 8 (1959), pp. 87–136.
A. Méril, Fonctionnelles analytiques à porteur non borné, Tokyo J. Math. 4 (1981), no. 2, pp. 457–492.
L. Prelli, Sheaves on subanalytic sites, Rend. Semin. Mat. Univ. Padova 120 (2008), pp. 167-216.
G. De Rham, Differentiable manifolds, Forms, currents, harmonic forms, translated from the French by F. R. Smith, with an introduction by S. S. Chern, Grundlehren der Mathematischen Wissenschaften, 266, Springer-Verlag, Berlin etc., 1984.
J. W. De Roever, Complex Fourier transformation and analytic functional with un-bounded carriers, with a preface by E. M. de Jager, Mathematical Centre Tracts, 89, Mathematisch Centrum, Amsterdam, 1978.