scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Agrawal B., Krantz M.J., Parker J., and Longenecker B.M. Expression of MUC1 mucin on activated human T cells: implications for a role of MUC1 in normal immune regulation. Cancer Res. 58 (1998) 4079-4081
Ahn S.M., Yoon H.Y., Lee B.G., Park K.C., Chung J.H., Moon C.H., and Lee S.H. Fructose-1,6-diphosphate attenuates prostaglandin E2 production and cyclo-oxygenase-2 expression in UVB-irradiated HaCaT keratinocytes. Br. J. Pharmacol. 137 (2002) 497-503
Brugger W., Buhring H.J., Grunebach F., Vogel W., Kaul S., Muller R., Brummendorf T.H., Ziegler B.L., Rappold I., Brossart P., Scheding S., and Kanz L. Expression of MUC-1 epitopes on normal bone marrow: implications for the detection of micrometastatic tumor cells. J. Clin. Oncol. 17 (1999) 1535-1544
Cloosen S., Gratama J.W., van Leeuwen E.B.M., Senden-Gijsbers B.L.M.G., Oving E.B.H., von Mensdorff-Pouilly S., Tarp M.A., Mandel U., Clausen H., Germeraad W.T.V., and Bos G.M.J. Cancer specific Mucin-1 glycoforms are expressed on multiple myeloma. Br. J. Haematol. 135 (2006) 513-516
Cloosen S., Thio M., Vanclee A., van Leeuwen E.B.M., Senden-Gijsbers B.L.M.G., Oving E.B.H., Germeraad W.T.V., and Bos G.M.J. Mucin-1 is expressed on dendritic cells, both in vitro and in vivo. Int. Immunol. 16 (2004) 1561-1571
Correa I., Plunkett T., Vlad A., Mungul A., Candelora-Kettel J., Burchell J.M., Taylor-Papadimitriou J., and Finn O.J. Form and pattern of MUC1 expression on T cells activated in vivo or in vitro suggests a function in T-cell migration. Immunology 108 (2003) 32-41
Fujita Y., Abe R., Sasaki M., Honda A., Furuichi M., Asano Y., Norisugi O., Shimizu T., and Shimizu H. Presence of circulating CCR10+ T cells and elevated serum CTACK/CCL27 in the early stage of mycosis fungoides. Clin. Cancer Res. 12 (2006) 2670-2675
Ho S.B., Niehans G.A., Lyftogt C., Yan P.S., Cherwitz D.L., Gum E.T., Dahiya R., and Kim Y.S. Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res. 53 (1993) 641-651
Hollingsworth M.A., and Swanson B.J. Mucins in cancer: protection and control of the cell surface. Nat. Rev. Cancer 4 (2004) 45-60
Hubert P., Caberg J.H., Gilles C., Bousarghin L., Franzen-Detrooz E., Boniver J., and Delvenne P. E-cadherin-dependent adhesion of dendritic and Langerhans cells to keratinocytes is defective in cervical human papillomavirus-associated (pre)neoplastic lesions. J. Pathol. 206 (2005) 346-355
Hubert P., van den B.F., Giannini S.L., Franzen-Detrooz E., Boniver J., and Delvenne P. Colonization of in vitro-formed cervical human papillomavirus-associated (pre)neoplastic lesions with dendritic cells: role of granulocyte/macrophage colony-stimulating factor. Am. J. Pathol. 154 (1999) 775-784
Kam J.L., Regimbald L.H., Hilgers J.H., Hoffman P., Krantz M.J., Longenecker B.M., and Hugh J.C. MUC1 synthetic peptide inhibition of intercellular adhesion molecule-1 and MUC1 binding requires six tandem repeats. Cancer Res. 58 (1998) 5577-5581
Kanda N., Koike S., and Watanabe S. IL-17 suppresses TNF-alpha-induced CCL27 production through induction of COX-2 in human keratinocytes. J. Allergy Clin. Immunol. 116 (2005) 1144-1150
Kohlgraf K.G., Gawron A.J., Higashi M., Meza J.L., Burdick M.D., Kitajima S., Kelly D.L., Caffrey T.C., and Hollingsworth M.A. Contribution of the MUC1 tandem repeat and cytoplasmic tail to invasive and metastatic properties of a pancreatic cancer cell line. Cancer Res. 63 (2003) 5011-5020
Legler D.F., Krause P., Scandella E., Singer E., and Groettrup M. Prostaglandin E2 is generally required for human dendritic cell migration and exerts its effect via EP2 and EP4 receptors. J. Immunol. 176 (2006) 966-973
Martin-Fontecha A., Sebastiani S., Hopken U.E., Uguccioni M., Lipp M., Lanzavecchia A., and Sallusto F. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med. 198 (2003) 615-621
Pivarcsi A., and Homey B. Chemokine networks in atopic dermatitis: traffic signals of disease. Curr. Allergy Asthma Rep. 5 (2005) 284-290
Rahn J.J., Chow J.W., Horne G.J., Mah B.K., Emerman J.T., Hoffman P., and Hugh J.C. MUC1 mediates transendothelial migration in vitro by ligating endothelial cell ICAM-1. Clin. Exp. Metastasis 22 (2005) 475-483
Regimbald L.H., Pilarski L.M., Longenecker B.M., Reddish M.A., Zimmermann G., and Hugh J.C. The breast mucin MUCI as a novel adhesion ligand for endothelial intercellular adhesion molecule 1 in breast cancer. Cancer Res. 56 (1996) 4244-4249
Scandella E., Men Y., Gillessen S., Forster R., and Groettrup M. Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood 100 (2002) 1354-1361
Thirkill T.L., Cao T., Stout M., Blankenship T.N., Barakat A., and Douglas G.C. MUC1 is involved in trophoblast transendothelial migration. Biochim. Biophys. Acta 1773 (2007) 1007-1014
Tsutsumida H., Swanson B.J., Singh P.K., Caffrey T.C., Kitajima S., Goto M., Yonezawa S., and Hollingsworth M.A. RNA interference suppression of MUC1 reduces the growth rate and metastatic phenotype of human pancreatic cancer cells. Clin. Cancer Res. 12 (2006) 2976-2987
Van Klinken B.J., Dekker J., Buller H.A., and Einerhand A.W. Mucin gene structure and expression: protection vs. adhesion. Am. J. Physiol. 269 (1995) G613-G627
Wykes M., MacDonald K.P., Tran M., Quin R.J., Xing P.X., Gendler S.J., Hart D.N., and McGuckin M.A. MUC1 epithelial mucin (CD227) is expressed by activated dendritic cells. J. Leukoc. Biol. 72 (2002) 692-701
Yanagihara S., Komura E., Nagafune J., Watarai H., and Yamaguchi Y. EBI1/CCR7 is a new member of dendritic cell chemokine receptor that is up-regulated upon maturation. J. Immunol. 161 (1998) 3096-3102
Yuan Z., Wong S., Borrelli A., and Chung M.A. Down-regulation of MUC1 in cancer cells inhibits cell migration by promoting E-cadherin/catenin complex formation. Biochem. Biophys. Res. Commun. 362 (2007) 740-746
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.