LiDAR aérien; hauteur dominante; Indice de productivité; SIG open source; QGIS; Wallonie; douglas; épicéa; Modélisation
Abstract :
[en] In forestry, top height is a common parameter used as indicator of the stand development stage. It can be used to estimate the potential production of monospecific even-aged stands. However, accurate field estimation of top height is time-consuming and expensive. Since the last two decades, LiDAR has proven to be very useful in estimating forest heights. In Wallonia, a low density LiDAR dataset (0.8 points /m2 on ground-level) is available for the whole territory. This paper outlines a tool, based on a predictive model of top height from airborne LiDAR data, to help forest management decision-making. The estimations provided by the model are associated with top height growth models to update top height over time and then estimate Site Index. The model has been validated for Norway spruce (Picea abies (L.) H. Karst.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands in the entire Wallonia area (Belgium). In order to facilitate access to these models, the process has been implemented as a plugin of the open source GIS software QGIS. Free and user-friendly, it is aimed to be used by forest managers and scientists. [fr] La hauteur dominante est une information souvent utilisée en gestion forestière. Il s'agit d'un bon indicateur du niveau de développement des peuplements, pouvant être employé pour estimer le niveau de productivité des peuplements purs équiennes. Cependant, son estimation à partir de mesures de terrain est relativement fastidieuse et coûteuse. Depuis plusieurs années, le LiDAR est reconnu pour sa capacité à estimer la hauteur des couverts forestiers de manière précise. En Wallonie, une couverture LiDAR basse densité (0,8 points/m² au sol) est disponible sur l’intégralité du territoire. Cet article présente un outil d’aide à la gestion forestière s’appuyant sur un modèle de prédiction de la hauteur dominante à partir de données LiDAR aérien. Les estimations fournies par ce modèle sont ensuite couplées à des modèles de croissance en hauteur dominante qui permettent une mise à jour de la hauteur dominante au cours du temps et l’estimation du Site Index (indice de productivité). Cet outil a été validé pour les peuplements d’épicéa commun (Picea abies (L.) H. Karst.f) et de douglas (Pseudotsuga menziesii (Mirb.) Franco) sur une emprise géographique correspondant à la Wallonie (Belgique).Pour permettre une utilisation aisée, il a été intégré dans un plugin du logiciel de Système d’Information Géographique (SIG) open source QGIS. Gratuit et facile d’utilisation, il est destiné aux gestionnaires forestiers et aux scientifiques.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Dedry, Laurent
Dethier, Olivier
Perin, Jérôme ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Gestion des ressources forestières et des milieux naturels
Michez, Adrien ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Gestion des ressources forestières et des milieux naturels
Bonnet, Stéphanie
Lejeune, Philippe ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Gestion des ressources forestières et des milieux naturels
Language :
French
Title :
FORESTIMATOR: un plugin QGIS d’estimation de la hauteur dominante et du Site Index de peuplements résineux à partir de LiDAR aérien
Publication date :
2015
Journal title :
Revue Française de Photogrammétrie et de Télédétection
ISSN :
1768-9791
Publisher :
Societe Francaise de Photogrammetrie et de Teledetection, France
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bastin L., Mclnerney D., Revež G., Figueiredo C, Simonetti D., Barredo J., Achard F., San-Miguel-Ayanz, J., 2012. Web Services for Forest Data, Analysis and Monitoring: Developments from EuroGEOSS. IEEE Earthzine, 5(2): 389531.
Birch, CP., Oom, S.P., Beecham, J.A., 2007. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecological Modelling 206(3-4): 347-359.
Bock J., Dambrine E., Dez G., Dupouey J.-L, Georges-Leroy M., Jolly A., Martins F.S.R.V., Renaud, J.-P., 2009. Towards site index mapping in deciduous stands using multi-echo LiDAR data. In IUFRO Division 4 Meeting - Extending Forest Inventory and Monitoring over Space and Time, Quebec, Canada.
Claessens H., Bifolchi E., Bythell S., Cordier S., De Bont A., Desjonquères A., Iboukassene S., Ridremont F., Van Der Perre R., Vincke C, Ponette Q., 2014. Le nouveau fichier écologique des essences. Pourquoi et comment ? Forêt Wallonne, 129 : 60-70.
Coops N. C, Wulder M. A., Culvenor D. S., St-Onge B., 2004. Comparison of forest attributes extracted from fine spatial resolution multispectral and LiDAR data. Canadian Journal of Remote Sensing, 30(6): 855-866.
Hägglund B., 1981. Evaluation of forest site productivity. In Forestry Abstracts, 42(11): 515-527.
Heurich M., Persson â., Holmgren J., Kennel E., 2004. Detecting and measuring individual trees with laser scanning in mixed mountain forest of central Europe using an algorithm developed for Swedish boreal forest conditions. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36: 307-312.
Holmgren J., Nilsson M., Olsson H., 2003. Estimation of tree height and stem volume on plots using airborne laser scanning. Forest Science, 49(3): 419-428.
Kaartinen H., Hyyppä J., Yu X., Vastaranta M., Hyyppä H., Kukko A., Holopainen M., Heipke C, Hirschmugl M., Mörsdorf F., Nœsset E., Pitkäenen J., Popescu S., Solberg S., Wolf B. M., Wu J.-C, 2012. An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sensing, 4(4): 950-974.
McGaughey R. J., 2013. FUSION/LDV: Software for LiDAR data analysis and visualization. February 2013-FUSION Version 3.30. USDA Forest Service. Pacific Northwest Research Station, University of Washington, Seattle, WA, USA.
Maltamo M., Packalén P., Suvanto A., Korhonen K. T., Mehtätalo L, Hyvönen P., 2009. Combining ALS and NFI training data for forest management planning: a case study in Kuortane, Western Finland. European Journal of Forest Research, 128(3): 305-317.
Maltamo M., Packalén P., Kallio E., Kangas J., Uuttera J., Heikkilä J., 2011. Airborne laser scanning based stand level management inventory in Finland. Proceedings of the 11th International Conference on LiDAR Applications for Assessing Forest Ecosystems, University of Tasmania, Australia, 16-20 October 2011. 10 pp.
Morgenroth J., Visser R., 2013. Uptake and barriers to the use of geospatial technologies in forest management. New Zealand Journal of Forestry Science, 43(1): 16.
Nœsset E., 1997. Estimating timber volume of forest stands using airborne laser scanner data. Remote Sensing of Environment, 61(2): 246-253.
Nœsset E., Bjerknes K. O., 2001. Estimating tree heights and number of stems in young forest stands using airborne laser scanner data. Remote Sensing of Environment, 78(3): 328-340.
Nœsset E., 2004. Practical large-scale forest stand inventory using a small-footprint airborne scanning laser. Scandinavian Journal of Forest Research, 19(2): 164-179.
Nœsset E., 2007. Airborne laser scanning as a method in operational forest inventory: status of accuracy assessments accomplished in Scandinavia. Scandinavian Journal of Forest Research, 22(5): 433-442.
Nœsset E., 2014. Area-Based Inventory in Norway-From Innovation to an Operational Reality. In Forestry Applications of Airborne Laser Scanning, 215-240.
Nilsson M., 1996. Estimation of tree heights and stand volume using an airborne lidar system. Remote Sensing of Environment, 56(1): 1-7.
Perin J., Hébert J., Brostaux Y., Lejeune P., Claessens H., 2013. Modelling the top-height growth and site index of Norway spruce in Southern Belgium. Forest Ecology and Management, 298: 62-70.
Perin J., De Thier O., Claessens H., Lejeune P., Hébert J., 2014. Nouvelles courbes de productivité harmonisées pour le douglas, l'épicéa et les mélèzes en Wallonie. Forêt Wallonne, 129 : 26-41.
Persson A., Holmgren J., Söderman U., 2002. Detecting and measuring individual trees using an airborne laser scanner. Photogrammetric Engineering and Remote Sensing, 68(9): 925-932.
Popescu S. C, Wynne R. H., Nelson R. F., 2002. Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size. Computers and Electronics in Agriculture, 37(1): 71-95.
Popescu S. C.Wynne R. H., 2004. Seeing the trees in the forest: using lidar and multispectral aata fusion with local filtering and variable window size for estimating tree height. Photogrammetric Engineering and Remote Sensing, 70(5): 589-604.
Reitberger J., Schnorr C, Krzystek P., Stilla U., 2009. 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6): 561-574.
Rondeux J., 1999. La mesure des arbres et des peuplements forestiers. Les presses agronomiques de Gembloux, Gembloux.
Rondeux J., Lecomte H., 2010. Inventaire Permanent des Ressources Forestières de Wallonie : Guide méthodologique. SPW, DG03, Jambes.
R development Core Team, 2011. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.r-proiect.org. 27 March 2015.
Harma M., Amateis R.L., Burkhart H.E., 2002. Top height definition and its effect on site index determination in thinned and unthinned loblolly pine plantations. Forest Ecology and Management, 168: 163-175.
Treitz P., Lim K., Woods M., Pitt D., Nesbitt D., Etheridge D., 2012. LiDAR sampling density for forest resource inventories in Ontario, Canada. Remote Sensing, 4(4): 830-848.
Watt P., Meredith A., Yang C, Watt M. S., 2013. Development of regional models of Pinus radiata height from GIS spatial data supported with supplementary satellite imagery. New Zealand Journal of Forestry Science, 43(1): 11.
White J. C, Wulder M. A., Varhola A., Vastaranta M., Coops N. C, Cook B. D., Pitt D., Woods M. 2013a. A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Center, Victoria, BC. Information Report FI-X-010 https://cfs.nrcan.gc.ca/publications?id=34887
White J. C, Wulder M. A., Vastaranta M., Coops N. C. Pitt D., Woods M., 2013b. The utility of image-based point clouds for forest inventory: A comparison with airborne laser scanning. Forests, 4(3): 518-536.
Woods M., Pitt D., Penner M., Lim K., Nesbitt D., Etheridge D., Treitz P., 2011. Operational implementation of a LiDAR inventory in Boreal Ontario. The Forestry Chronicle, 87(4): 512-528.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.