[en] This study reports the influence of magnesium incorporation into cuprous oxide (Cu2O) on its transformation into cupric oxide (CuO). Thermal treatments under oxidizing conditions are performed on undoped and magnesium-doped cuprous oxide thin films, Cu2O and Cu2O:Mg respectively, deposited by aerosol-assisted metal–organic chemical vapor deposition. The oxidation kinetics of these films shows a slower rate in the Cu2O:Mg system, since the complete oxidation into CuO occurs at a higher temperature when compared with undoped Cu2O. The increased stability of Cu2O:Mg can be explained by the inhibition of the formation of split copper vacancies, the defect most frequently associated with the CuO nucleation. Annealing treatments performed on Cu2O thin films provide new insights on the dopant influence on the mechanism to generate simple and split copper vacancies as well as the transformation of Cu2O into CuO.
Minami, T.; Nishi, Y.; Miyata, T. Cu2O-Based Solar Cells Using Oxide Semiconductors. J. Semicond 2016, 37, 014002 10.1088/1674-4926/37/1/014002
Nandy, S.; Banerjee, A.; Fortunato, E.; Martins, R. A Review on Cu2O and Cu-Based p-Type Semiconducting Transparent Oxide Materials: Promising Candidates for New Generation Oxide Based Electronics. Rev. Adv. Sci. Eng. 2013, 2, 273-304, 10.1166/rase.2013.1045
Biccari, F.; Malerba, C.; Mittiga, A. Defects and Doping in Cu2O. General Properties and Applications; Lulu. com, 2009; pp 1-28.
Scanlon, D. O.; Walsh, A.; Watson, G. W. Understanding the P-Type Conduction Properties of the Transparent Conducting Oxide CuBO2: A Density Functional Theoryanalysis. Chem. Mater. 2009, 21, 4568-4576, 10.1021/cm9015113
Scanlon, D. O.; Morgan, B. J.; Watson, G. W.; Walsh, A. Acceptor Levels in P-Type Cu2O: Rationalizing Theory and Experiment. Phys. Rev. Lett. 2009, 103, 1-4, 10.1103/PhysRevLett.103.096405
Isseroff, L. Y.; Carter, E. A. Electronic Structure of Pure and Doped Cuprous Oxide with Copper Vacancies: Suppression of Trap States. Chem. Mater. 2013, 25, 253-265, 10.1021/cm3040278
Nolan, M.; Elliott, S. D. The P-Type Conduction Mechanism in Cu2O: A First Principles Study. Phys. Chem. Chem. Phys. 2006, 8, 5350-5358, 10.1039/b611969g
Figueiredo, V.; Elangovan, E.; Goncąlves, G.; Barquinha, P.; Pereira, L.; Franco, N.; Alves, E.; Martins, R.; Fortunato, E. Effect of Post-Annealing on the Properties of Copper Oxide Thin Films Obtained from the Oxidation of Evaporated Metallic Copper. Appl. Surf. Sci. 2008, 254, 3949-3954, 10.1016/j.apsusc.2007.12.019
Wang, Y.; Miska, P.; Pilloud, D.; Horwat, D.; Mücklich, F.; Pierson, J. F. Transmittance Enhancement and Optical Band Gap Widening of Cu2O Thin Films after Air Annealing. J. Appl. Phys. 2014, 115, 073505 10.1063/1.4865957
Johan, M. R.; Suan, M. S. M.; Hawari, N. L.; Ching, H. A. Annealing Effects on the Properties of Copper Oxide Thin Films Prepared by Chemical Deposition. Int. J. Electrochem. Sci. 2011, 6, 6094-6104
Eisermann, S.; Kronenberger, A.; Laufer, A.; Bieber, J.; Haas, G.; Lautenschläger, S.; Homm, G.; Klar, P. J.; Meyer, B. K. Copper Oxide Thin Films by Chemical Vapor Deposition: Synthesis, Characterization and Electrical Properties. Phys. Status Solidi A 2012, 209, 531-536, 10.1002/pssa.201127493
Wang, J.; Li, C.; Zhu, Y.; Boscoboinik, J. A.; Zhou, G. Insight into the Phase Transformation Pathways of Copper Oxidation: From Oxygen Chemisorption on the Clean Surface to Multilayer Bulk Oxide Growth. J. Phys. Chem. C 2018, 122, 26519-26527, 10.1021/acs.jpcc.8b09145
Meyer, B. K.; Polity, A.; Reppin, D.; Becker, M.; Hering, P.; Klar, P. J.; Sander, T.; Reindl, C.; Benz, J.; Eickhoff, M. et al. Binary Copper Oxide Semiconductors: From Materials towards Devices. Phys. Status Solidi B 2012, 249, 1487-1509, 10.1002/pssb.201248128
Camacho-Espinosa, E.; Rimmaudo, I.; Riech, I.; Mis-Fernández, R.; Penìa, J. L. Stability of Sputter Deposited Cuprous Oxide (Cu2O) Subjected to Ageing Conditions for Photovoltaic Applications. J. Appl. Phys. 2018, 123, 085301 10.1063/1.5017538
Deuermeier, J.; Wardenga, H. F.; Morasch, J.; Siol, S.; Nandy, S.; Calmeiro, T.; Martins, R.; Klein, A.; Fortunato, E. Highly Conductive Grain Boundaries in Copper Oxide Thin Films. J. Appl. Phys. 2016, 119, 235303 10.1063/1.4954002
Deuermeier, J.; Liu, H.; Rapenne, L.; Calmeiro, T.; Renou, G.; Martins, R.; Munìoz-Rojas, D.; Fortunato, E. Visualization of Nanocrystalline CuO in the Grain Boundaries of Cu 2 O Thin Films and Effect on Band Bending and Film Resistivity. APL Mater. 2018, 6, 096103 10.1063/1.5042046
Rehman, S.; Hur, J. H.; Kim, D. K. Resistive Switching in Solution-Processed Copper Oxide (CuxO) by Stoichiometry Tuning. J. Phys. Chem. C 2018, 122, 11076-11085, 10.1021/acs.jpcc.8b00432
Chatterjee, S.; Saha, S. K.; Pal, A. J. Formation of All-Oxide Solar Cells in Atmospheric Condition Based on Cu2O Thin-Films Grown through SILAR Technique. Sol. Energy Mater. Sol. Cells 2016, 147, 17-26, 10.1016/j.solmat.2015.11.045
Nishi, Y.; Miyata, T.; Minami, T. The Impact of Heterojunction Formation Temperature on Obtainable Conversion Efficiency in N-ZnO/p-Cu2O Solar Cells. Thin Solid Films 2013, 528, 72-76, 10.1016/j.tsf.2012.09.090
Zang, Z. Efficiency Enhancement of ZnO/Cu2O Solar Cells with Well Oriented and Micrometer Grain Sized Cu2O Films. Appl. Phys. Lett. 2018, 112, 042106 10.1063/1.5017002
Yu, L.; Xiong, L.; Yu, Y. Cu2O Homojunction Solar Cells: F-Doped N-Type Thin Film and Highly Improved Efficiency. J. Phys. Chem. C 2015, 119, 22803-22811, 10.1021/acs.jpcc.5b06736
Minami, T.; Miyata, T.; Nishi, Y. Relationship between the Electrical Properties of the N-Oxide and p-Cu2O Layers and the Photovoltaic Properties of Cu2O-Based Heterojunction Solar Cells. Sol. Energy Mater. Sol. Cells 2016, 147, 85-93, 10.1016/j.solmat.2015.11.033
Minami, T.; Yuki, N.; Toshihiro, M. Efficiency Enhancement Using a Zn1-xGexO Thin Film as an n-Type Window Layer in Cu2O-Based Heterojunction Solar Cells. Appl. Phys. Express 2016, 9, 052301 10.7567/APEX.9.052301
Minami, T.; Nishi, Y.; Miyata, T. High-Efficiency Cu2O-Based Heterojunction Solar Cells Fabricated Using a Ga2O3 Thin Film as N-Type Layer. Appl. Phys. Express 2013, 6, 044101 10.7567/APEX.6.044101
Malerba, C.; Azanza Ricardo, C. L.; Dincau, M.; Biccari, F.; Scardi, P.; Mittiga, A. Nitrogen Doped Cu2O: A Possible Material for Intermediate Band Solar Cells?. Sol. Energy Mater. Sol. Cells 2012, 105, 192-195, 10.1016/j.solmat.2012.06.017
Zang, Z.; Nakamura, A.; Temmyo, J. Single Cuprous Oxide Films Synthesized by Radical Oxidation at Low Temperature for PV Application. Opt. Express 2013, 11448, 10.1364/oe.21.011448
Bergerot, L.; Jiménez, C.; Chaix-Pluchery, O.; Rapenne, L.; Deschanvres, J.-L. Growth and Characterization of Sr-Doped Cu2O Thin Films Deposited by Metalorganic Chemical Vapor Deposition. Phys. Status Solidi A 2015, 212, 1735-1741, 10.1002/pssa.201431750
Brochen, S.; Bergerot, L.; Favre, W.; Resende, J.; Jiménez, C.; Deschanvres, J.-L.; Consonni, V. Effect of Strontium Incorporation on the P-Type Conductivity of Cu2O Thin Films Deposited by Metal-Organic Chemical Vapor Deposition. J. Phys. Chem. C 2016, 120, 17261-17267, 10.1021/acs.jpcc.6b05479
Resende, J.; Jiménez, C.; Nguyen, N. D.; Deschanvres, J.-L. Magnesium-Doped Cuprous Oxide (Mg:Cu2O) Thin Films as a Transparent p-Type Semiconductor. Phys. Status Solidi A 2016, 7, 2296-2302, 10.1002/pssa.201532870
Nolan, M.; Elliott, S. D. Tuning the Transparency of Cu2O with Substitutional Cation Doping. Chem. Mater. 2008, 20, 5522-5531, 10.1021/cm703395k
Kardarian, K.; Nunes, D.; Maria Sberna, P.; Ginsburg, A.; Keller, D. A.; Vaz Pinto, J.; Deuermeier, J.; Anderson, A. Y.; Zaban, A.; Martins, R. et al. Effect of Mg Doping on Cu2O Thin Films and Their Behavior on the TiO2/Cu2O Heterojunction Solar Cells. Sol. Energy Mater. Sol. Cells 2016, 147, 27-36, 10.1016/j.solmat.2015.11.041
Cu(0): Cu(II) or Cu(I):Cu(II) Calculations. http://www.xpsfitting.com/2012/01/cu0cuii-or-cuicuii-calculations.html (accessed Aug 21, 2017).
Goldstein, H. F.; Dai-sik, K.; Peter, Y. Y. et al. Raman Study of CuO Single Crystals. Phys. Rev. B 1990, 41, 7192, 10.1103/PhysRevB.41.7192
Guha, S.; Peebles, D.; Wieting, T. J. Zone-Center (Q=0) Optical Phonons in CuO Studied by Raman and Infrared Spectroscopy. Phys. Rev. B 1991, 43, 13092-13101, 10.1103/PhysRevB.43.13092
Morales, J.; Barranco, A.; Caballero, A.; Holgado, J. P. et al. Interface Effects for Cu, CuO, and Cu2O Deposited on SiO2 and ZrO2. XPS Determination of the Valence State of Copper in Cu/SiO2 and Cu/ZrO2 Catalysts. J. Phys. Chem. B 2002, 106, 6921-6929, 10.1021/jp014618m
Kim, J. Y.; Rodriguez, A.; Hanson, J. C.; Frenkel, A. I.; Lee, P. L. Reduction of CuO and Cu2O with H2: H Embedding and Kinetic Effects in the Formation of Suboxides. J. Am. Chem. Soc. 2003, 10684-10692, 10.1021/ja0301673
Tolentino, H.; Medarde, M.; Fontaine, A.; Baudelet, F.; Dartyge, E.; Guay, D.; Tourillon, G. Anisotropy of the Core-Hole Relaxation in x-Ray-Absorption Spectroscopy as Probed in Square Planar Cuprates. Phys. Rev. B 1992, 45, 8091-8096, 10.1103/PhysRevB.45.8091
Akeyama, K.; Kuroda, H.; Kosugi, N. Cu K-Edge XANES and Electronic Structure of Trivalent, Divalent, and Monovalent Cu Oxides. Jpn. J. Appl. Phys. 1993, 32, 98, 10.7567/JJAPS.32S2.98
Rudolph, J.; Jacob, C. R. Revisiting the Dependence of Cu K-Edge X-Ray Absorption Spectra on Oxidation State and Coordination Environment. Inorg. Chem. 2018, 57, 10591-10607, 10.1021/acs.inorgchem.8b01219
Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537-541, 10.1107/S0909049505012719