Schiffman, M. et al. The role of human papillomavirus (HPV) genotyping in cervical cancer screening: A large-scale evaluation of the cobas HPV test. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 24, 1304–1310 (2015).
de Martel, C., Plummer, M., Vignat, J. & Franceschi, S. Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer 141, 664–670 (2017).
Graham, S. V. Keratinocyte Differentiation-Dependent Human Papillomavirus Gene Regulation. Viruses 9, 245 (2017).
Johansson, C. & Schwartz, S. Regulation of human papillomavirus gene expression by splicing and polyadenylation. Nat. Rev. Microbiol. 11, 239–251 (2013).
Chen, J. et al. Mapping of HPV transcripts in four human cervical lesions using RNAseq suggests quantitative rearrangements during carcinogenic progression. Virology 462, 14–24 (2014).
Moody, C. A. & Laimins, L. A. Human papillomavirus oncoproteins: pathways to transformation. Nat. Rev. Cancer 10, 550 (2010).
McLaughlin-Drubin, M. E. & Münger, K. The human papillomavirus E7 oncoprotein. Virology 384, 335–344 (2009).
Dyson, N., Howley, P. M., Münger, K. & Harlow, E. The Human Papilloma Virus–16 E7 Oncoprotein is Able to Bind to the Retinoblastoma Gene Product. Science 243, 934–937 (1989).
Werness, B. A., Levine, A. J. & Howley, P. M. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248, 76–80 (1990).
Smotkin, D., Prokoph, H. & Wettstein, F. O. Oncogenic and nononcogenic human genital papillomaviruses generate the E7 mRNA by different mechanisms. J. Virol. 63, 1441–1447 (1989).
Cornelissen, M. T. E. et al. Uniformity of the Splicing Pattern of the E6/E7 Transcripts in Human Papillomavirus Type 16-transformed Human Fibroblasts, Human Cervical Premalignant Lesions and Carcinomas. J. Gen. Virol. 71, 1243–1246 (1990).
Kösel, S., Burggraf, S., Engelhardt, W. & Olgemöller, B. Increased levels of HPV16 E6*I transcripts in high-grade cervical cytology and histology (CIN II+) detected by rapid real-time RT-PCR amplification. Cytopathology 18, 290–299 (2007).
Cricca, M. et al. Molecular analysis of HPV 16 E6I/E6II spliced mRNAs and correlation with the viral physical state and the grade of the cervical lesion. J. Med. Virol. 81, 1276–1282 (2009).
Lin, K. et al. E6-associated transcription patterns in human papilloma virus 16-positive cervical tissues. Oncol. Lett. 9, 478–482 (2015).
Hong, A. et al. E6 viral protein ratio correlates with outcomes in human papillomavirus related oropharyngeal cancer. Cancer Biol. Ther. 17, 181–187 (2016).
Tang, S., Tao, M., McCoy, J. P. & Zheng, Z.-M. The E7 Oncoprotein Is Translated from Spliced E6*I Transcripts in High-Risk Human Papillomavirus Type 16- or Type 18-Positive Cervical Cancer Cell Lines via Translation Reinitiation. J. Virol. 80, 4249–4263 (2006).
Zheng, Z.-M. Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. J. Biomed. Sci. 11, 278–294 (2004).
Stacey, S. N. et al. Leaky scanning is the predominant mechanism for translation of human papillomavirus type 16 E7 oncoprotein from E6/E7 bicistronic mRNA. J. Virol. 74, 7284–7297 (2000).
del Moral-Hernández, O. et al. The HPV-16 E7 oncoprotein is expressed mainly from the unspliced E6/E7 transcript in cervical carcinoma C33-A cells. Arch. Virol. 155, 1959–1970 (2010).
Pim, D., Massimi, P. & Banks, L. Alternatively spliced HPV-18 E6* protein inhibits E6 mediated degradation of p53 and suppresses transformed cell growth. Oncogene 15, 257–264 (1997).
Storrs, C. H. & Silverstein, S. J. PATJ, a Tight Junction-Associated PDZ Protein, Is a Novel Degradation Target of High-Risk Human Papillomavirus E6 and the Alternatively Spliced Isoform 18 E6*. J. Virol. 81, 4080–4090 (2007).
Pim, D., Tomaić, V. & Banks, L. The Human Papillomavirus (HPV) E6* Proteins from High-Risk, Mucosal HPVs Can Direct Degradation of Cellular Proteins in the Absence of Full-Length E6 Protein. J. Virol. 83, 9863–9874 (2009).
Wanichwatanadecha, P., Sirisrimangkorn, S., Kaewprag, J. & Ponglikitmongkol, M. Transactivation activity of human papillomavirus type 16 E6*I on aldo-keto reductase genes enhances chemoresistance in cervical cancer cells. J. Gen. Virol. 93, 1081–1092 (2012).
Williams, V. M., Filippova, M., Filippov, V., Payne, K. J. & Duerksen-Hughes, P. Human Papillomavirus Type 16 E6* Induces Oxidative Stress and DNA Damage. J. Virol. 88, 6751–6761 (2014).
Filippova, M. et al. The small splice variant of HPV16 E6, E6N, reduces tumor formation in cervical carcinoma xenografts. Virology 450–451, 153–164 (2014).
Olmedo-Nieva, L., Muñoz-Bello, J. O., Contreras-Paredes, A. & Lizano, M. The Role of E6 Spliced Isoforms (E6*) in Human Papillomavirus-Induced Carcinogenesis. Viruses 10 (2018).
Liu, Y., Tergaonkar, V., Krishna, S. & Androphy, E. J. Human Papillomavirus Type 16 E6-enhanced Susceptibility of L929 Cells to Tumor Necrosis Factor α Correlates with Increased Accumulation of Reactive Oxygen Species. J. Biol. Chem. 274, 24819–24827 (1999).
Shin, H.-J. et al. Human papillomavirus 16 E6 increases the radiosensitivity of p53-mutated cervical cancer cells, associated with up-regulation of aurora A. Int. J. Radiat. Biol. 86, 769–779 (2010).
den Boon, J. A. et al. Molecular transitions from papillomavirus infection to cervical precancer and cancer: Role of stromal estrogen receptor signaling. Proc. Natl. Acad. Sci. USA 112, E3255–E3264 (2015).
Pyeon, D. et al. Fundamental Differences in Cell Cycle Deregulation in Human Papillomavirus–Positive and Human Papillomavirus–Negative Head/Neck and Cervical Cancers. Cancer Res. 67, 4605–4619 (2007).
Masterson, L. et al. Deregulation of SYCP2 predicts early stage human papillomavirus‐positive oropharyngeal carcinoma: A prospective whole transcriptome analysis. Cancer Sci. 106, 1568–1575 (2015).
Rajkumar, T. et al. Identification and validation of genes involved in cervical tumourigenesis. BMC Cancer 11, 80 (2011).
Harden, M. & Munger, K. Perturbation of DROSHA and DICER expression by Human Papillomavirus 16 Oncoproteins. Virology 507, 192–198 (2017).
Isok-Paas, H., Männik, A., Ustav, E. & Ustav, M. The transcription map of HPV11 in U2OS cells adequately reflects the initial and stable replication phases of the viral genome. Virol. J. 12, 59 (2015).
Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).
Jung, A. C. et al. Biological and clinical relevance of transcriptionally active human papillomavirus (HPV) infection in oropharynx squamous cell carcinoma. Int. J. Cancer 126, 1882–1894 (2010).
Filippova, M. et al. Complexes of Human Papillomavirus Type 16 E6 Proteins Form Pseudo-Death-Inducing Signaling Complex Structures during Tumor Necrosis Factor-Mediated Apoptosis. J. Virol. 83, 210–227 (2009).
Czech, B. & Hannon, G. J. Small RNA sorting: matchmaking for Argonautes. Nat. Rev. Genet. 12, 19 (2011).
Sedman, S. A. et al. The full-length E6 protein of human papillomavirus type 16 has transforming and trans-activating activities and cooperates with E7 to immortalize keratinocytes in culture. J. Virol. 65, 4860–4866 (1991).
Ristriani, T., Fournane, S., Orfanoudakis, G., Travé, G. & Masson, M. A single-codon mutation converts HPV16 E6 oncoprotein into a potential tumor suppressor, which induces p53-dependent senescence of HPV-positive HeLa cervical cancer cells. Oncogene 28, 762–772 (2009).
Kessis, T. D. et al. Human papillomavirus 16 E6 expression disrupts the p53-mediated cellular response to DNA damage. Proc. Natl. Acad. Sci. 90, 3988–3992 (1993).
Klymenko, T. et al. RNA-Seq Analysis of Differentiated Keratinocytes Reveals a Massive Response to Late Events during Human Papillomavirus 16 Infection, Including Loss of Epithelial Barrier Function. J. Virol. 91, e01001–17 (2017).
van de Schootbrugge, C. et al. Effect of hypoxia on the expression of αB-crystallin in head and neck squamous cell carcinoma. BMC Cancer 14, 252 (2014).
Li, X. et al. A CCL2/ROS autoregulation loop is critical for cancer-associated fibroblasts-enhanced tumor growth of oral squamous cell carcinoma. Carcinogenesis 35, 1362–1370 (2014).
Murphy-Marshman, H. et al. Antioxidants and NOX1/NOX4 inhibition blocks TGFβ1-induced CCN2 and α-SMA expression in dermal and gingival fibroblasts. PLoS ONE 12 (2017).
Chen, K. C.-W., Zhou, Y., Zhang, W. & Lou, M. F. Control of PDGF-induced reactive oxygen species (ROS) generation and signal transduction in human lens epithelial cells. Mol. Vis. 13, 374–387 (2007).
Adachi, T. et al. NAD(P)H oxidase plays a crucial role in PDGF-induced proliferation of hepatic stellate cells. Hepatology 41, 1272–1281 (2005).
Ohkouchi, S., Kikuchi, T., Ebina, M. & Nukiwa, T. Novel functions of stanniocalcin-1 (STC1) through uncoupling protein 2 (UCP2) up-regulation; promoting survival of cancer cells under oxidative stress and inducing the uncoupling respiration (Warburg effect). Eur. Respir. J. 38, p1490 (2011).
Keith, B., Adelman, D. M. & Simon, M. C. Targeted mutation of the murine arylhydrocarbon receptor nuclear translocator 2 (Arnt2) gene reveals partial redundancy with Arnt. Proc. Natl. Acad. Sci. USA 98, 6692–6697 (2001).
Waldron, A. L. et al. Oxidative stress-dependent MMP-13 activity underlies glucose neurotoxicity. J. Diabetes Complications 32, 249–257 (2018).
Del Carlo, M., Schwartz, D., Erickson, E. A. & Loeser, R. F. The Endogenous Production of Reactive Oxygen Species Is Required For Stimulation of Human Articular Chondrocyte MMP Production by Fibronectin Fragments. Free Radic. Biol. Med. 42, 1350–1358 (2007).
Radisky, D. C. et al. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123–127 (2005).
Choi, D.-H. et al. Matrix Metalloproteinase-3 Causes Dopaminergic Neuronal Death through Nox1-Regenerated Oxidative Stress. PLoS ONE 9 (2014).
Nieborowska-Skorska, M. et al. Rac2-MRC-cIII–generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 119, 4253–4263 (2012).
Pei, H. et al. RAC2-P38 MAPK-dependent NADPH oxidase activity is associated with the resistance of quiescent cells to ionizing radiation. Cell Cycle 16, 113–122 (2017).
Watanabe, R. et al. Emerging Roles of Tumor Necrosis Factor-Stimulated Gene-6 in the Pathophysiology and Treatment of Atherosclerosis. Int. J. Mol. Sci. 19 (2018).
Shkolnik, K. et al. Reactive oxygen species are indispensable in ovulation. Proc. Natl. Acad. Sci. USA 108, 1462–1467 (2011).
Jeon, S., Allen-Hoffmann, B. L. & Lambert, P. F. Integration of human papillomavirus type 16 into the human genome correlates with a selective growth advantage of cells. J. Virol. 69, 2989–2997 (1995).
Scarpini, C. G., Groves, I. J., Pett, M. R., Ward, D. & Coleman, N. Virus transcript levels and cell growth rates after naturally occurring HPV16 integration events in basal cervical keratinocytes. J. Pathol. 233, 281–293 (2014).
Chun, E. et al. CCL2 Promotes Colorectal Carcinogenesis by Enhancing Polymorphonuclear Myeloid-Derived Suppressor Cell Population and Function. Cell Rep. 12, 244–257 (2015).
Chen, X.-L., Zhang, Q., Zhao, R. & Medford, R. M. Superoxide, H2O2, and iron are required for TNF-α-induced MCP-1 gene expression in endothelial cells: role of Rac1 and NADPH oxidase. Am. J. Physiol.-Heart Circ. Physiol. 286, H1001–H1007 (2004).
Reuter, S., Gupta, S. C., Chaturvedi, M. M. & Aggarwal, B. B. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic. Biol. Med. 49, 1603–1616 (2010).
Paracha, U. Z. et al. Oxidative stress and hepatitis C virus. Virol. J. 10, 251 (2013).
Reshi, M. L., Su, Y.-C. & Hong, J.-R. RNA Viruses: ROS-Mediated Cell Death. International Journal of Cell Biology, 10.1155/2014/467452 (2014).
Mouret, S. et al. E6* oncoprotein expression of human papillomavirus type-16 determines different ultraviolet sensitivity related to glutathione and glutathione peroxidase antioxidant defence. Exp. Dermatol. 14, 401–410 (2005).
Evans, W. et al. Overexpression of HPV16 E6* Alters β-Integrin and Mitochondrial Dysfunction Pathways in Cervical Cancer Cells. Cancer Genomics. Proteomics 13, 259–273 (2016).
Williams, V. M., Filippova, M., Soto, U. & Duerksen-Hughes, P. J. HPV-DNA integration and carcinogenesis: putative roles for inflammation and oxidative stress. Future Virol. 6, 45–57 (2010).
Camini, F. C., da Silva Caetano, C. C., Almeida, L. T. & de Brito Magalhães, C. L. Implications of oxidative stress on viral pathogenesis. Arch. Virol. 162, 907–917 (2017).
Chen Wongworawat, Y., Filippova, M., Williams, V. M., Filippov, V. & Duerksen-Hughes, P. J. Chronic oxidative stress increases the integration frequency of foreign DNA and human papillomavirus 16 in human keratinocytes. Am. J. Cancer Res. 6, 764–780 (2016).
Cruz-Gregorio, A. et al. Human Papillomavirus Types 16 and 18 Early-expressed Proteins Differentially Modulate the Cellular Redox State and DNA Damage. Int. J. Biol. Sci. 14, 21–35 (2018).
Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).
Mi, H. et al. PANTHER version 11: expanded annotation data from Gene Ontology and Reactome pathways, and data analysis tool enhancements. Nucleic Acids Res. 45, D183–D189 (2017).
Ogata, H. et al. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 27, 29–34 (1999).
Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017).