scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bertrand, A. (2017). Etude de la consanguinité des bisons d’Europe avec un modèle de Markov caché à multiples classes autozygotes. Master's thesis, Université de Liège, Liège, Belgique.
Bertrand, A. R., Kadri, N. K., Flori, L., Gautier, M., & Druet, T. (2019). RZooRoH: an R package to characterize individual genomic autozygosity and identify homozygous-by-descent segments. Zenodo Digital Repository, https://doi.org/10.5281/zenodo.2562716
Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M., & Wilson, J. F. (2018). Runs of homozygosity: Windows into population history and trait architecture. Nature Reviews Genetics, 19, 220–234. https://doi.org/10.1038/nrg.2017.109
Druet, T., & Gautier, M. (2017). A model-based approach to characterize individual inbreeding at both global and local genomic scales. Molecular Ecology, 26, 5820–5841. https://doi.org/10.1111/mec.14324
Ferenčaković, M., Sölkner, J., Kapš, M., & Curik, I. (2017). Genome-wide mapping and estimation of inbreeding depression of semen quality traits in a cattle population. Journal of Dairy Science, 100, 4721–4730. https://doi.org/10.3168/jds.2016-12164
Kijas, J. W., Lenstra, J. A., Hayes, B., Boitard, S., Porto Neto, L. R., Cristobal, M. S., … Dalrymple, B. (2012). Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biology, 10, e1001258. https://doi.org/10.1371/journal.pbio.1001258
Lander, E. S., & Botstein, D. (1987). Homozygosity mapping: A way to map human recessive traits with the dna of inbred children. Science, 236, 1567–1570. https://doi.org/10.1126/science.2884728
Leutenegger, A. L., Prum, B., Genin, E., Verny, C., Lemainque, A., Clerget-Darpoux, F., & Thompson, E. A. (2003). Estimation of the inbreeding coefficient through use of genomic data. American Journal of Human Genetics, 73, 516–523. https://doi.org/10.1086/378207
MacLeod, I. M., Meuwissen, T. H. E., Hayes, B. J., Goddard, M. E. (2009). A novel predictor of multilocus haplotype homozygosity: Comparison with existing predictors. Genetics Research, 91, 413–426. https://doi.org/10.1017/s0016672309990358
Magi, A., Tattini, L., Palombo, F., Benelli, M., Gialluisi, A., Giusti, B., … Pippucci, T. (2014). H 3 m 2: Detection of runs of homozygosity from whole exome sequencing data. Bioinformatics, 30, 2852–2859. https://doi.org/10.1093/bioinformatics/btu401
McQuillan, R., Leutenegger, A. L., Abdel-Rahman, R., Franklin, C. S., Pericic, M., Barac-Lauc, L., … Wilson, J. F. (2008) Runs of homozygosity in european populations. American Journal of Human Genetics, 83, 359–372. https://doi.org/10.1016/j.ajhg.2008.08.007
Narasimhan, V., Danecek, P., Scally, A., Xue, Y., Tyler-Smith, C., & Durbin, R. (2016). BCFtools/RoH: A hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics, 32, 1749–1751. https://doi.org/10.1093/bioinformatics/btw044
Palamara, P. F., Lencz, T., Darvasi, A., & Pe’er, I. (2012). Length distributions of identity by descent reveal fine-scale demographic history. The American Journal of Human Genetics, 91, 809–822. https://doi.org/10.1016/j.ajhg.2012.08.030
Pemberton, T. J., Absher, D., Feldman, M. W., Myers, R. M., Rosenberg, N. A., & Li, J. Z. (2012). Genomic patterns of homozygosity in worldwide human populations. American Journal of Human Genetics, 91, 275–292. https://doi.org/10.1016/j.ajhg.2012.06.014
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., … Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics, 81, 559–575. https://doi.org/10.1086/519795
R Core Team. (2013). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77, 257–286. https://doi.org/10.1109/5.18626
Sempéré, G., Moazami-Goudarzi, K., Eggen, A., Laloë, D., Gautier, M., & Flori, L. (2015). WIDDE: A web-interfaced next generation database for genetic diversity exploration, with a first application in cattle. BMC Genomics, 16, 940. https://doi.org/10.1186/s12864-015-2181-1
Solé, M., Gori, A. S., Faux, P., Bertrand, A., Farnir, F., Gautier, M., & Druet, T. (2017). Age-based partitioning of individual genomic inbreeding levels in belgian blue cattle. Genetics Selection Evolution, 49, 92. https://doi.org/10.1186/s12711-017-0370-x
Thomas, A., Skolnick, M. H., & Lewis, C. M. (1994). Genomic mismatch scanning in pedigrees. Mathematical Medicine and Biology, 11, 1–16. https://doi.org/10.1093/imammb/11.1.1
Vieira, F. G., Albrechtsen, A., & Nielsen, R. (2016). Estimating IBD tracts from low coverage ngs data. Bioinformatics, 32, 2096–2102. https://doi.org/10.1093/bioinformatics/btw212
Wang, S., Haynes, C., Barany, F., & Ott, J. (2009). Genome-wide autozygosity mapping in human populations. Genet Epidemiol, 33, 172–180. https://doi.org/10.1002/gepi.20344
Yengo, L., Zhu, Z., Wray, N. R., Weir, B. S., Yang, J., Robinson, M. R., & Visscher, P. M. (2017). Detection and quantification of inbreeding depression for complex traits from snp data. Proceedings of the National Academy of Sciences, 114, 8602–8607. https://doi.org/10.1073/pnas.1621096114
Zucchini, W., & MacDonald, I. (2009). Hidden Markov models for time series, volume 110 of monographs on statistics and applied probability. New York: Chapman and Hall/CRC.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.