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1. Identifying homozygous-by-descent (HBD) regions in individual genomes is highly valuable

to infer the recent history of populations and to provide insights into trait architecture.

2. Here we present the RZooRoH R-package that implements an efficient and accurate model-

based approach to identify HBD segments. The underlying Hidden Markov Model partitions

the genome-wide individual autozygosity into different age-related HBD classes while ac-

counting for genotyping errors and genetic map information.

3. The RZooRoH package is user-friendly and versatile, accepting either genotyping or sequenc-

ing (including low-coverage) data in various formats. Through numerical maximization and

parallelization, computational performances were improved compared to our initial Fortran

implementation of the model. The package allows to evaluate and to compare various models

defined by their number of HBD classes and it also provides several graphical functions that

help interpretation of the results.

4. RZooRoH is an efficient tool that proves particularly suited for sub-optimal data sets (e.g.,

low marker density, individual low-coverage sequencing, uneven marker spacing) and for

individuals from populations with complex demographic histories. RZooRoH is available

from CRAN: https://CRAN.R-project.org/package=RZooRoH.

RZooRoH: un paquet R pour caractériser la consanguinité

génomique et identifier des segments homozygotes-par-descendance

1. L’identification dans les génomes de segments homozygotes-par-descendance (HBD) est par-

ticulièrement utile pour comprendre l’histoire démographique récente des populations et

l’architecture génétique des caractères.

2. RZooRoH est un paquet R qui repose sur un modèle précis et efficace pour identifier des

segments HBD. La chaîne de Markov cachée sous-jacente répartit l’autozygotie individuelle

dans des classes HBD d’âges différents tout en tenant compte des erreurs de génotypage et

de la carte génétique.

3. RZooRoH est facile d’utilisation et polyvalent: le paquet accepte des données de génoty-

page et de séquençage (y compris à faible couverture) sous différents formats. Grâce à des

techniques d’optimisation numérique, les performances ont été améliorées par rapport à la

version initiale développée en Fortran. Le paquet permet d’évaluer et de comparer de nom-

breux modèles, définis par le nombre de classes HBD. Plusieurs fonctions graphiques sont

incluses pour faciliter l’interprétation des résultats.

This article is protected by copyright. All rights reserved. 
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4. RZooRoH est donc un outil efficace qui est particulièrement bien adapté à des jeux de

données sous-optimaux (p.ex., faible densité de marqueurs, séquençage à faible couverture,

distances génétiques hétérogènes entre marqueurs ) et aux populations ayant une histoire

démographique complexe. RZooRoH est disponible sur le site du CRAN: https://CRAN.R-

project.org/package=RZooRoH.

Introduction

Autozygous or homozygous-by-descent (HBD) segments in individual genomes result from the in-

heritance of two copies of a single chromosomal segment from an ancestor. Due to recombination,

the length of an HBD segment is inversely related to the number of generations connecting these

two chromosomal copies in the genealogy and thus to the time of living of the ancestor. In turn,

the inbreeding level of an individual directly determines the proportion of its genome that is HBD.

For instance, matings between parents and their offspring result on average in 25% inbreeding and

HBD segments about 30 cM in length (see also Thomas et al. (1994) for expected IBD sharing be-

tween two related individuals). Partitioning individual genomes into HBD and non-HBD segments

has become very popular in recent years due to its wide range of applications (Ceballos et al.,

2018). It allows indeed to estimate the inbreeding coefficient, a key parameter for the management

of populations under conservation or included in breeding programs, and to study inbreeding de-

pression or to map recessive deleterious variants using autozygosity mapping (Ferenčaković et al.,

2017; Lander & Botstein, 1987; Wang et al., 2009). In addition, characterizing the distribution

of HBD segments is informative about the recent demographic history of populations (MacLeod

et al., 2009; Palamara et al., 2012) since the frequency of HBD segments depends on the effective

population size (Ne) and their length reflects the time to the common ancestor.

In genotyping or sequencing data sets, HBD segments are expected to consist of a stretch of

homozygous genotypes called runs of homozygosity (ROH). Hence, several methods relying on

ROH detection have been proposed to identify HBD segments (working most often with SNPs).

First rule-based methods (e.g., McQuillan et al., 2008) consider only stretches of genotypes fulfilling

some pre-defined criteria (e.g., number of markers, number of heterozygous and missing genotypes,

marker density, window length, marker spacing) as HBD segments. These criteria need to be

optimized for every data set according to the characteristics of the studied population or the

genotyping technology used. Second, model-based approaches relying on likelihood-ratio tests

to classify windows of consecutive markers as HBD or non-HBD have been proposed (Pemberton

et al., 2012; Wang et al., 2009). The likelihood accounts for marker allele frequencies and genotyping

errors making decision less sensitive to marker ascertainment bias and an ad hoc procedure is used

This article is protected by copyright. All rights reserved. 
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to define the optimal window sizes in order to obtain a clear bimodal distribution of the LOD scores.

Hidden Markov models (HMM) represent a valuable alternative by modeling individual genomes

as mosaic of HBD and non-HBD segments (Leutenegger et al., 2003). They indeed provide a

framework to compute the HBD probabilities (as opposed to the binary classification obtained

with ROH detection) at each marker position by integrating over all possible segment lengths

while accounting for population allele frequencies, genotyping error rates and genetic distances

between markers. They can also efficiently handle exome or whole-genome (including low-coverage)

sequence data (Magi et al., 2014; Narasimhan et al., 2016; Vieira et al., 2016).

Based on simulation studies, Narasimhan et al. (2016) found that HMM had lower false positive

and false negative rates compared to ROH estimated with PLINK (Purcell et al., 2007). Druet

& Gautier (2017) concluded that the differences between the approaches was small when the

number of markers per HBD segment was high whereas HMM performed better than window-based

approaches to assess global or local (e.g., at each locus) autozygosity at lower marker density or for

shorter HBD segments. The use of HMM is particularly valuable when information is sparser or

less accurate as with low-coverage sequencing experiments, lower marker density, biased genotyping

arrays, etc. (Druet & Gautier, 2017). The HMM are also particularly useful when the genotyping

error or the recombination rates are variable, or the marker spacing is not uniform. For instance,

Magi et al. (2014) showed that an HMM based approach outperforms PLINK when applied to

whole-exome sequences data by considering the distances between consecutive markers. Vieira et al.

(2016) demonstrated the importance of using genotype likelihoods (as integrated in some HMM

approaches) instead of genotypes (as used in window-based approaches) when dealing with low-

coverage sequencing data. HMM also present important conceptual differences with window-based

methods since, by providing probabilities, they directly provide information about the uncertainty

associated with the inference, which is particularly helpful when the information is degraded (e.g.,

low marker density, low MAF or low coverage). They also do not require the prior definition of

various arbitrary thresholds (e.g., Yengo et al., 2017) for marker spacing, window size, minimum

number of markers, etc. that need to be re-defined for each data set with rule-based methods.

We herein present a new user-friendly R package implementing the HMM-based approach we

recently developed (Druet & Gautier, 2017) to scan individual genomes for HBD segments. This

method has been intensively tested on simulated data set with a wide range of characteristics

(marker density, error rates, sequencing coverage, etc) and also compared to other methods (see

Druet & Gautier (2017) for more details). The package works with different data types (geno-

types, genotype likelihoods, sequence read counts) obtained with various technologies (genotyping

arrays, whole genome-sequencing, genotyping-by-sequencing) and allows to explore and compare

various model specifications. The package relies on a new optimization procedure implemented in

This article is protected by copyright. All rights reserved. 
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combination with a re-parametrization of the model that both improves parameter estimation and

speed-ups computations. In addition, parallelization per individual allows further gain in speed.

The package finally provides several graphical utilities that help interpretation of the results.

Description

The RZooRoH model: a multiple HBD classes HMM

The model is a HMM describing an individual genome as a succession of segments classified in

K − 1 HBD classes (defined by the expected length of the segments) and one non-HBD class,

labeled K. To compute the probability of one such sequence, the model requires the probability

to stay in the current segment or to start a new segment between two consecutive markers and the

probability to observe particular genotype or sequence data conditionally on the class specificities.

The probability to continue a segment is e−Rk , where Rk is the rate specific to class k. As a

result, the length of HBD segments from class k is exponentially distributed with a rate Rk. The

expected length is then equal to 1/Rk Morgans. HBD classes with low rates (long HBD segments)

correspond to HBD segments inherited from recent common ancestors whereas those with high

rates correspond to autozygosity associated with ancient common ancestors. The rate of a class is

approximately equal to twice the number of generations to the common ancestors associated with

that class. Note that if the genetic distances are incorrect, HBD segments will still be identified but

the relationship between their length and their age will be more complex and the rates of the HBD

classes will no longer have a simple interpretation (see Druet & Gautier (2017) for more details).The

probabilities to observe the genotype or sequence data depends on whether the class is HBD or

not, on the allele frequencies and the genotyping error rate. In HBD segments, heterozygous

genotypes are unlikely and result from mutations, gene conversions or genotyping errors, whereas

in non-HBD segments, observed genotypes are expected in Hardy-Weinberg proportions. When a

segment ends, the probability that the next segment starts in class k is a function of the mixing

coefficients Mk. These parameters define the frequency of the segments from each class and don’t

have a straightforward biological interpretation.

On the benefits of using multiple HBD classes

The multiple HBD classes HMM relaxes the assumption made in previous works (Leutenegger

et al., 2003; Narasimhan et al., 2016; Vieira et al., 2016) that all HBD tracts belong to a single

class (i.e., they have the same expected length) which might be interpreted biologically as consid-

ering that all the autozygosity traces back to one or several ancestors living in the same generation.

Our multiple HBD classes model allows to fit more realistic situations where ancestors contributing

This article is protected by copyright. All rights reserved. 
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to autozygosity trace back to different generations in the past (e.g., Druet & Gautier, 2017; Solé

et al., 2017). The HBD classes are indeed related to the age of common ancestors contributing to

them (Druet & Gautier, 2017): classes with longer (shorter) segments, i.e. lower (higher) rates,

correspond to more recent (distant) common ancestors. We showed in previous studies that the

use of multiple HBD classes results in a better fit of individual genetic data and more accurate

estimations of autozygosity levels both locally (i.e. at each locus) and globally, particularly in com-

plex populations (e.g., Druet & Gautier, 2017; Solé et al., 2017). More precisely, single HBD class

models may underestimate the autozygosity when multiple generations contribute to it (Druet &

Gautier, 2017). We also illustrated with cattle data that the use of single HBD class models results

in lower estimates of autozygosity and that the distribution of identified HBD segments is more

concentrated at intermediary sizes (Solé et al., 2017) because the smallest HBD segments are not

captured while the long ones are fragmented in multiple smaller segments. Obtaining the correct

length of HBD segments is essential to interpret the results, in particular to estimate the age of the

ancestors. Interestingly, models with multiple HBD classes offer the possibility to reveal the recent

demographic history by partitioning HBD segments in different age-related classes and to estimate

the contribution of the different past generations to the current autozygosity (Druet & Gautier,

2017). At individual scale, high contributions of very recent HBD classes suggest that the parents

were highly related which helps to understand mating behaviors in populations when pedigrees

are unavailable. At the population level, large contributions of a class to autozygosity indicates a

reduced effective population size (Ne) at the corresponding time period, possibly associated with

a bottleneck or a founder effect. Conversely, a low contribution to autozygosity suggests a large

Ne.

Model re-parametrization and implementation

In the HMM framework, we can use the forward-backward algorithm (Rabiner, 1989) to compute

the probability to belong to each of the different classes at each marker position by integrating

over all possible sequences of segments. These locus-specific HBD probabilities can be used for

autozygosity mapping or can be averaged over all the positions to obtain genome-wide estimates

(e.g., proportion of the genome within a given HBD class). They can be reported per HBD class

or cumulated over several HBD classes with a rate smaller than a chosen threshold T. In that case,

we estimate the proportion of autozygosity associated with common ancestors more recent than

a selected time point (corresponding then to an inbreeding coefficient estimated with respect to

a base population approximately 0.5*T generations ago). Alternatively, we can use the Viterbi

algorithm (Rabiner, 1989) to identify the most likely sequence of classes and identify HBD segments

as uninterrupted stretches of markers assigned to the same HBD class.

This article is protected by copyright. All rights reserved. 
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As in Vieira et al. (2016), we use the L-BFGS-B method implemented in the optim function

from the R stats package (R Core Team, 2013) to estimate the model parameters. In order to

work with unconstrained parameters and to obtain ordered HBD classes (with increasing rates of

exponential distributions), we defined new parameters (e.g., Zucchini & MacDonald, 2009):

ηk =


log(Rk −Rk−1) if 1 < k < K

log(Rk) if k = 1 or k = K
(1)

τk = log

(
Mk

MK

)
if k < K (2)

Note that this optimization procedure was not implemented in our initial Fortran implemen-

tation that relied on a EM-algorithm described in Druet & Gautier (2017). This EM algorithm is

also implemented in the R-package.

The package

The package consists of several functions. First, zoodata() reads genotype data and marker po-

sitions. It is compatible with the oxford gen format and accepts also data from whole-genome

sequencing as genotypes (zformat = "gt"), genotype probabilities (zformat = "gp"), likelihoods as

phred score (zformat = "gl") or read counts (zformat = "ad").

The zoomodel() function allows the user to define the model: i) the number of HBD classes; ii)

whether the rate of each HBD class should be pre-defined or estimated; iii) the error rate associated

with the genotyping or sequencing data.

Then the zoorun() function is used to estimate the global and local HBD probabilities or to

obtain the list of HBD segments (see vignette for more details on the output). The function also

allows to estimate the model parameters i.e., the K mixture coefficients and the K rates of each

HBD class (when they are not pre-defined) with either the new optimization procedure (method

= "opti") or with the EM-algorithm (method = "estem").

Finally, four additional plot functions can be used for visualization purposes: zooplot_partitioning(),

zooplot_prophbd(), zooplot_hbdseg(), zooplot_individuals(). These functions plot the partition-

ing of the genome in different HBD classes per individual (as a barplot), report the proportion

of the genome associated with different HBD classes at the population or individual levels (either

with cumulative curves or not) and represent HBD segments identified in a specific genomic region.

This article is protected by copyright. All rights reserved. 
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Figure 1: Partitioning of the genome in different HBD classes in six sheep populations.
Results are plotted for ten randomly selected individuals per population. The height of each bar
represents the proportion of the genome associated with the HBD class of the corresponding color.

Efficiency of the new implementation

To test the efficiency of the newly implemented optimization procedure, we compared it to the

results obtained with the EM algorithm in terms of likelihood, number of iterations and computing

time on two data sets we previously used (Druet & Gautier, 2017) and for four models (Tables 1

and 2). The first data set consists of a simulation with 500 individuals and the second data set

consists of publicly available genotypes for 110 Soay sheep (Kijas et al., 2012).

The new optimization procedure achieved higher or similar likelihoods than the EM algorithm

for models with pre-defined classes or with a single HBD class, and performed clearly better

for models with multiple HBD classes when rates are estimated (Table 1). Note that global

autozygosity was always highly correlated across procedures (> 0.9995). Differences in HBD class

partitioning between the two estimation procedures were subtle for models with pre-defined classes

or a single HBD class but substantial for other models. This was expected since the estimation

of HBD class rates makes the HBD classes no longer identical. Note however, that in these cases,

the new optimization procedure leads to estimated rates that provides a better fit to the data

(i.e., higher likelihoods). Similar trends were observed for analyses of simulated data sets and

other real data sets (e.g., Bertrand, 2017). From a computational point of view, the optimization

procedure always required less iterations (up to 4 times less) to converge than the EM algorithm

for the simulated data set (Table 2) and for the Soay sheep data set when analyzed under the

more complex model. However, one iteration of the optimization procedure requires a single call

of the forward algorithm and thus remains two to three times faster than one iteration of the EM

algorithm that requires in addition a call of the backward algorithm and additional computations.

This article is protected by copyright. All rights reserved. 
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As a result, the approach with the numerical optimization was 1.22 to 10 times faster than with

the EM algorithm (Table 2). Note also, that the zoorun() function can be run in parallel for several

individuals (nT option) which allows approximately dividing the computation time by the number

of threads.
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Figure 2: HBD segments identified on chromosome 1 in six sheep populations. Results
are plotted for ten randomly selected individuals per population. One line represents one individual
and HBD segments are indicated with wider boxes.

Illustration on real data

For illustration purposes, we ran the package on genotype data from six sheep populations with

different demographic histories already studied in Druet & Gautier (2017). We defined a model

with 13 HBD classes with pre-defined rates equal to {2, 4, 8, . . . 8192}. The populations display

variation in terms of numbers and age/length of HBD segments as shown by our results. Fig.

This article is protected by copyright. All rights reserved. 
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1 represents the partitioning of individuals genomes in these 13 different HBD classes (obtained

with the zooplot_partitioning() function). The populations display clear differences in terms of

partitioning. For instance, autozygosity in individuals from the Aragonesa breed is limited and

associated with small (ancient) HBD segments (represented in blue). Individuals from the Soay

population exhibit higher levels of autozygosity than Dorsethorn individuals but associated with

more distant ancestors (mostly HBD classes with rates equal to 32 and 64). The Rambouillet

population displays more variation in total autozygosity and length of HBD segments (more HBD

classes contribute to autozygosity).

The HBD segments identified on chromosome 1 are plotted in Fig. 2 (obtained with the

zooplot_hbdseg() function). They are in agreement with the partitioning described above: few

and short segments in the Aragonesa breed, high autozygosity levels with long HBD segments

in the Wiltshire individuals, many small segments in Soay sheep, etc. Finally, Fig. 3 shows

variation in individual levels of autozygosity, cumulated over several HBD classes (summing all the

autozygosity associated with HBD classes with a rate smaller than a selected threshold, associated

with common ancestor more recent than a selected period). As explained in Solé et al. (2017)

these values can be interpreted as inbreeding coefficients estimated with respect to different base

populations. We observe clear differences in terms of total autozygosity, generations contributing

to autozygosity and individual variation (some breeds being more homogeneous than others).

Conclusion

Identifying HBD segments is essential for many applications in quantitative and population ge-

netics. Methods should handle both genotyping and sequencing data available in both model and

non-model organisms. In addition, they should account for complex demographic histories (with

multiple common ancestors in multiple generations), marker allele frequencies, genetic distances,

genotyping errors probabilities and confidence in genotype calling (amount of information). To

that end, we developed RzooRoH, an efficient user-friendly R-package, that implements a HMM

model-based approach partitioning autozygosity in age-related HBD classes.
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Data Accessibility

The data sets used in the present study come from previous studies and are publicly available.

The Sheep Diversity panel (Kijas et al., 2012) data was downloaded from the WIDDE data base

at http://widde.toulouse.inra.fr/widde (Sempéré et al., 2015). Both data sets can also be obtained

at https://doi.org/10.5281/zenodo.2562716.
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Data Model Mean difference Minimal Difference Maximal difference
Soay Pre-defined - 4 classes 0.001 0.000 0.038
Soay Pre-defined - 14 classes 0.007 -0.006 0.140
Soay Rate estimation - 1 HBD class 0.000 0.000 0.000
Soay Rate estimation - 4 classes -2.879 -7.406 0.001
Simulated Pre-defined - 4 classes 0.000 -0.003 0.010
Simulated Pre-defined - 14 classes 0.004 -0.013 0.186
Simulated Rate estimation - 1 HBD class 0.000 0.000 0.000
Simulated Rate estimation - 4 classes -4.091 -17.305 0.369

Table 1: Difference in likelihood maximization. The differences are equal to the maximum
log(likelihood) achieved with the EM algorithm minus the value achieved with the numerical max-
imization procedure and the model re-parametrization. Negative values indicate that the new
procedure achieved higher likelihood than the EM algorithm.

Data Model Mean number of iterations Total CPU time (hh::mm:ss) Elapsed time (hh::mm:ss)
f-EM r-EM r-optim f-EM r-EM r-optim r-optim with 8 threads

Soay Pre-defined - 4 classes 78.7 78.7 182.6 00:09:11 00:10:49 00:08:54 00:01:15
Soay Pre-defined - 14 classes 429.9 429.9 1037.5 05:41:30 06:18:42 04:19:44 00:35:07
Soay Rate estimation - 1 HBD class 42.2 42.2 51.5 00:03:14 00:03:53 00:01:41 00:00:23
Soay Rate estimation - 4 classes 952.4 953.3 495.3 02:33:02 02:54:25 00:30:57 00:03:27
Simulated Pre-defined - 4 classes 534.3 534.4 151.8 02:27:39 02:44:00 00:16:33 00:02:16
Simulated Pre-defined - 14 classes 717.7 718.0 652.7 12:15:26 13:38:39 03:33:34 00:27:24
Simulated Rate estimation - 1 HBD class 101.5 101.5 49.2 00:18:20 00:20:17 00:03:29 00:00:35
Simulated Rate estimation - 4 classes 988.6 989.6 524.7 06:17:50 07:13:17 00:55:37 00:07:10

Table 2: Comparison of running times. The compared software are ZooRoH.f90 (f-EM),
RZooRoH using numerical maximization and re-parametrisation (r-optim) or using the EM-
algorithm (r-EM). Computations have been performed without constraints. The last column
indicates the elapsed running time when the new procedure is run in parallel with eight cores.
The maximum number of iterations is constrained to 1,000 with both EM algorithms.
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