[en] The deposition of polymeric thin layers bearing reactive functional groups is a promising solution to provide functionality on otherwise inert surfaces, for instance, for bioconjugation purposes. Atmospheric pressure plasma (AP plasma) deposition technology offers many advantages, such as fast deposition rates, low costs, low waste generation and suitability for coating various kind of material surfaces. In this work, the AP plasma-assisted copolymerization of methyl methacrylate (MMA) with a vinyl derivative of L-DOPA was studied in order to deposit coatings with reactive catechol/quinone groups suitable for protein covalent immobilization. The effect of adding a chemical cross-linker, between 0 and 2 mol%, to the monomer mixture is also studied in order to prepare robust plasma PMMA-based layers in liquid physiological media. The layer prepared with 0.2 mol% of cross-linker shows the best balance between stability in saline-buffered media and surface functionalization. Bioconjugation via the grafting of Ranaspumin-2 recombinant, a naturally occurring surfactant protein, is carried out in a single step after plasma deposition. Protein immobilization is corroborated by Quartz Crystal Microbalance with Dissipation (QCM-D) and Surface Plasmon Resonance (SPR) analyses and confirmed via Epicocconone staining, X-Ray Photoemission Spectroscopy (XPS) and Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) measurements and surface wettability characterizations. The bio-functionalized layers presented an enhanced activity against the adhesion of Human Serum Albumin (HSA), indicating the grafting potential of the Ranaspumin-2 bio-surfactant to produce anti-biofouling functional coatings.
Research Center/Unit :
CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège Center for Education and Research on Macromolecules (CERM), Belgium
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Czuba, Urszula; Institute of Science and Technology (LIST), Materials Research and Technology Department, Luxembourg > University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM), Belgium
Quintana, Robert; Institute of Science and Technology (LIST), Materials Research and Technology Department, Luxembourg
Lassaux, Patricia ; University of Liège (ULiège), GIGA-R, Molecular Biomimetic and Protein Engineering Laboratory (MBPEL), Belgium
Bombera, Radoslaw; European Commission, Joint Research Centre (JRC), Ispra, Italy
Ceccone, Giacomo; European Commission, Joint Research Centre (JRC), Ispra, Italy
Bañuls-Ciscar, Jorge; European Commission, Joint Research Centre (JRC), Ispra, Italy
Moreno-Couranjou, Maryline; Institute of Science and Technology (LIST), Materials Research and Technology Department, Luxembourg
Detrembleur, Christophe ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM), Belgium
Choquet, Patrick; Institute of Science and Technology (LIST), Materials Research and Technology Department, Luxembourg
Language :
English
Title :
Anti-biofouling activity of Ranaspumin-2 bio-surfactant immobilized on catechol-functional PMMA thin layers prepared by atmospheric plasma deposition
Publication date :
01 June 2019
Journal title :
Colloids and Surfaces. B, Biointerfaces
ISSN :
0927-7765
eISSN :
1873-4367
Publisher :
Elsevier, Netherlands
Volume :
178
Pages :
120-128
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique FNR - Fonds National de la Recherche Région wallonne
Liebana, S., Drago, G.A., Bioconjugation and stabilisation of biomolecules in biosensors. Essays Biochem. 60 (2016), 59–68, 10.1042/EBC20150007.
Pereira, M., Lai, E.P., Capillary electrophoresis for the characterization of quantum dots after non-selective or selective bioconjugation with antibodies for immunoassay. J. Nanobiotechnol., 6, 2008, 10, 10.1186/1477-3155-6-10.
Kalia, J., Raines, R.T., Advances in Bioconjugation, vol. 14, 2010, NIH Public Access, 138–147 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2901115/pdf/nihms186498.pdf.
Hu, Q.-Y., Berti, F., Adamo, R., Towards the next generation of biomedicines by site-selective conjugation. Chem. Soc. Rev. 45 (2016), 1691–1719, 10.1039/C4CS00388H.
Duday, D., Vreuls, C., Moreno, M., Frache, G., Boscher, N.D., Zocchi, G., Archambeau, C., Van De Weerdt, C., Martial, J., Choquet, P., Atmospheric pressure plasma modified surfaces for immobilization of antimicrobial nisin peptides. Surf. Coat. Technol. 218 (2013), 152–161, 10.1016/j.surfcoat.2012.12.045.
ElSohly, A.M., Francis, M.B., Development of oxidative coupling strategies for site-selective protein modification. Acc. Chem. Res. 48 (2015), 1971–1978, 10.1021/acs.accounts.5b00139.
Mauchauffé R., Bonot, S., Moreno-Couranjou, M., Detrembleur, C., Boscher, N.D., Van De Weerdt, C., Duwez, A.S., Choquet, P., Fast atmospheric plasma deposition of bio-inspired catechol/quinone-rich nanolayers to immobilize NDM-1 enzymes for water treatment. Adv. Mater. Interfaces, 3, 2016, 10.1002/admi.201500520.
Lee, H., Rho, J., Messersmith, P.B., Facile conjugation of biomolecu les onto surfaces via mussel adhesive protein inspired coatings. Adv. Mater. 21 (2009), 431–434, 10.1002/adma.200801222.
Batul, R., Tamanna, T., Khaliq, A., Yu, A., Recent progress in the biomedical applications of polydopamine nanostructures. Biomater. Sci. 5 (2017), 1204–1229, 10.1039/C7BM00187H.
Faure, E., Falentin-Daudré C., Lanero, T.S., Vreuls, C., Zocchi, G., Van De Weerdt, C., Martial, J., Jérôme, C., Duwez, A.-S., Detrembleur, C., Functional nanogels as platforms for imparting antibacterial, antibiofilm, and antiadhesion activities to stainless steel. Adv. Funct. Mater. 22 (2012), 5271–5282, 10.1002/adfm.201201106.
Faure, E., Falentin-Daudré C., Jérôme, C., Lyskawa, J., Fournier, D., Woisel, P., Detrembleur, C., Catechols as versatile platforms in polymer chemistry. Prog. Polym. Sci. 38 (2013), 236–270, 10.1016/j.progpolymsci.2012.06.004.
Ding, Y.H., Floren, M., Tan, W., Mussel-inspired polydopamine for bio-surface functionalization. Biosurface Biotribology 2 (2016), 121–136, 10.1016/j.bsbt.2016.11.001.
Patil, N., Jérôme, C., Detrembleur, C., Recent advances in the synthesis of catechol-derived (bio)polymers for applications in energy storage and environment. Prog. Polym. Sci. 82 (2018), 34–91, 10.1016/j.progpolymsci.2018.04.002.
Datta, S., Christena, L.R., Rajaram, Y.R.S., Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 2012, 1–9, 10.1007/s13205-012-0071-7.
Hasan, J., Crawford, R.J., Ivanova, E.P., Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol. 31 (2013), 295–304, 10.1016/j.tibtech.2013.01.017.
Alves, D., Olívia Pereira, M., Mini-review: antimicrobial peptides and enzymes as promising candidates to functionalize biomaterial surfaces. Biofouling 30 (2014), 483–499, 10.1080/08927014.2014.889120.
Wei, Q., Haag, R., Universal polymer coatings and their representative biomedical applications. Mater. Horizons 2 (2015), 567–577, 10.1039/C5MH00089K.
Su, L., Yu, Y., Zhao, Y., Liang, F., Zhang, X., Strong antibacterial polydopamine coatings prepared by a shaking-assisted method. Sci. Rep., 6, 2016, 24420, 10.1038/srep24420.
Ku, S.H., Park, C.B., Human endothelial cell growth on mussel-inspired nanofiber scaffold for vascular tissue engineering. Biomaterials 31 (2010), 9431–9437, 10.1016/j.biomaterials.2010.08.071.
Sileika, T.S., Kim, H.-D., Maniak, P., Messersmith, P.B., Antibacterial Performance of Polydopamine Modified Polymer Surfaces Containing Passive and Active Components. ACS Appl. Mater. Interfaces 3 (2011), 4602–4610, 10.1021/am200978h.
Czuba, U., Quintana, R., De Pauw-Gillet, M.-C., Bourguignon, M., Moreno-Couranjou, M., Alexandre, M., Detrembleur, C., Choquet, P., Atmospheric plasma deposition of methacrylate layers containing catechol/quinone groups: an alternative to polydopamine bioconjugation for biomedical applications. Adv. Healthc. Mater., 7, 2018, 1701059, 10.1002/adhm.201701059.
Mauchauffé R., Moreno-Couranjou, M., Boscher, N.D., Van De Weerdt, C., Duwez, A.-S., Choquet, P., Robust bio-inspired antibacterial surfaces based on the covalent binding of peptides on functional atmospheric plasma thin films. J. Mater. Chem. B Mater. Biol. Med., 2, 2014, 5168, 10.1039/C4TB00503A.
Loyer, F., Frache, G., Choquet, P., Boscher, N.D., Atmospheric pressure plasma-initiated chemical vapor deposition (AP-PiCVD) of poly(alkyl acrylates): an experimental study. Macromolecules 50 (2017), 4351–4362, 10.1021/acs.macromol.7b00461.
Biederman, H., Plasma Polymer Films. 2004, Published By Imperial College Press and Distributed By World Scientific Publishing Co., 10.1142/p336.
Nisol, B., Batan, A., Dabeux, F., Kakaroglou, A., De Graeve, I., Van Assche, G., Van Mele, B., Terryn, H., Reniers, F., Surface characterization of atmospheric pressure plasma-deposited allyl methacrylate and acrylic acid based coatings. Plasma Process. Polym. 10 (2013), 564–571, 10.1002/ppap.201200022.
Batan, A., Nisol, B., Kakaroglou, A., De Graeve, I., Van Assche, G., Van Mele, B., Terryn, H., Reniers, F., The impact of double bonds in the APPECVD of acrylate-like precursors. Plasma Process. Polym., 2013, 10.1002/ppap.201300054 n/a-n/a.
Cooper, A., Vance, S.J., Smith, B.O., Kennedy, M.W., Frog foams and natural protein surfactants. Colloids Surf. A Physicochem. Eng. Asp., 2017, 1–10, 10.1016/j.colsurfa.2017.01.049.
Cooper, A., Kennedy, M.W., Biofoams and natural protein surfactants. Biophys. Chem. 151 (2010), 96–104, 10.1016/j.bpc.2010.06.006.
Cavalcante Hissa, D., Arruda Bezerra, G., Birner-Gruenberger, R., Paulino Silva, L., Usõn, I., Gruber, K., MacIel Melo, V.M., Unique crystal structure of a novel surfactant protein from the foam nest of the frog leptodactylus vastus. ChemBioChem 15 (2014), 393–398, 10.1002/cbic.201300726.
Schor, M., Reid, J.L., MacPhee, C.E., Stanley-Wall, N.R., The diverse structures and functions of surfactant proteins. Trends Biochem. Sci. 41 (2016), 610–620, 10.1016/j.tibs.2016.04.009.
Ruso, J.M., Piñeiro, J., Proteins in Solution and at Interfaces. 2013, John Wiley & Sons, Inc., Hoboken, NJ, USA, 10.1002/9781118523063.
Mackenzie, C.D., Smith, B.O., Meister, A., Blume, A., Zhao, X., Lu, J.R., Kennedy, M.W., Cooper, A., Ranaspumin-2: structure and function of a surfactant protein from the foam nests of a tropical frog. Biophys. J. 96 (2009), 4984–4992, 10.1016/j.bpj.2009.03.044.
Mackenzie, C.D., Smith, B.O., Meister, A., Blume, A., Zhao, X., Lu, J.R., Kennedy, M.W., Cooper, A., Ranaspumin-2: structure and function of a surfactant protein from the foam nests of a tropical frog. Biophys. J. 96 (2009), 4984–4992, 10.1016/j.bpj.2009.03.044.
Kredi, D., Improving Interfaces for Nerve Repair. 2016.
Desai, B.O., Kredi, V., Riehle, D., Smith, M.O., Application of natural surfactant protein fusions to direct cell adhesion on hydrophobic substrates. Eur. Biophys. J., 46, 2017, 328, 10.1007/s00249-017-1222-x.
Trindade, G.F., Abel, M., Watts, J.F., simsMVA: a tool for multivariate analysis of ToF- SIMS datasets. Chemometr. Intell. Lab. Syst., 2018, 10.1016/j.chemolab.2018.10.001.
Carswell, T.G., Hill, D.J.T., Kellman, R., Londero, D.I., O'Donnell, J.H., Pomery, P.J., Winzor, C.L., Mechanisms of polymerization of methacrylate copolymers of biological interest. Makromol. Chem. Macromol. Symp. 51 (1991), 183–191, 10.1002/masy.19910510116.
Vivaldo-Lima, E., Modeling of the free-radical copolymerization kinetics with crosslinking of methyl methacrylate / ethylene glycol dimethacrylate up to high conversions and considering thermal effects. Rev. Soc. Quím. Méx. 47 (2003), 22–33.
Cools, P., Van Vrekhem, S., De Geyter, N., Morent, R., The use of DBD plasma treatment and polymerization for the enhancement of biomedical UHMWPE. Thin Solid Films 572 (2014), 251–259, 10.1016/j.tsf.2014.08.033.
Luo, R., Tang, L., Wang, J., Zhao, Y., Tu, Q., Weng, Y., Shen, R., Huang, N., Improved immobilization of biomolecules to quinone-rich polydopamine for efficient surface functionalization. Colloids Surf. B Biointerfaces 106 (2013), 66–73, 10.1016/j.colsurfb.2013.01.033.
Pillar, E.A., Zhou, R., Guzman, M.I., Heterogeneous oxidation of catechol. J. Phys. Chem. A 119 (2015), 10349–10359, 10.1021/acs.jpca.5b07914.
Ye, Q., Zhou, F., Liu, W., Bioinspired catecholic chemistry for surface modification. Chem. Soc. Rev. 40 (2011), 4244–4258, 10.1039/c1cs15026j.
Faure, E., Falentin-Daudré C., Jérôme, C., Lyskawa, J., Fournier, D., Woisel, P., Detrembleur, C., Catechols as versatile platforms in polymer chemistry. Prog. Polym. Sci. 38 (2013), 236–270, 10.1016/j.progpolymsci.2012.06.004.
Li, Y., Jongberg, S., Andersen, M.L., Davies, M.J., Lund, M.N., Quinone-induced protein modifications: kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins. Free Radic. Biol. Med. 97 (2016), 148–157, 10.1016/j.freeradbiomed.2016.05.019.
Yang, J., Cohen Stuart, M.A., Kamperman, M., Jack of all trades: versatile catechol crosslinking mechanisms. Chem. Soc. Rev. 43 (2014), 8271–8298, 10.1039/C4CS00185K.
Morris, R.J., Brandani, G.B., Desai, V., Smith, B.O., Schor, M., MacPhee, C.E., The conformation of interfacially adsorbed Ranaspumin-2 is an arrested state on the unfolding pathway. Biophys. J. 111 (2016), 732–742, 10.1016/j.bpj.2016.06.006.