DARCIS, Gilles ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service des maladies infectieuses - médecine interne
Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D., HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271 (1996), 1582–1586 (80-).
Wei, X., Ghosh, S.K., Taylor, M.E., et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373 (1995), 117–122.
Chavez, L., Calvanese, V., Verdin, E., HIV latency is established directly and early in both resting and activated primary CD4 T cells. PLoS Pathog 11 (2015), 1–21.
van der Sluis, R.M., van Montfort, T., Pollakis, G., et al. Dendritic cell-induced activation of Latent HIV-1 provirus in actively proliferating primary T lymphocytes. PLoS Pathog, 9, 2013, e1003259.
Darcis, G., Van Driessche, B., Bouchat, S., Kirchhoff, F., Van Lint, C., Molecular control of HIV and SIV latency. Current topics in Microbiology and Immunology, 2017, Springer Berlin Heidelberg, Berlin, Heidelberg, 1–22.
Yukl, S.A., Kaiser, P., Kim, P., et al. HIV latency in isolated patient CD4+ T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. Sci Transl Med, 10, 2018 http://stm.sciencemag.org/content/10/430/eaap9927.abstract.
Huang, J., Wang, F., Argyris, E., et al. Cellular microRNAs contribute to HIV-1 latency in resting primary CD4+T lymphocytes. Nat Med 13 (2007), 1241–1247.
Zolotukhin, A.S., Michalowski, D., Bear, J., et al. PSF acts through the human immunodeficiency virus type 1 mRNA instability elements to regulate virus expression. Mol Cell Biol 23 (2003), 6618–6630.
Kula, A., Gharu, L., Marcello, A., HIV-1 pre-mRNA commitment to Rev mediated export through PSF and Matrin 3. Virology 435 (2013), 329–340.
Yedavalli, V.S.R.K., Jeang, K.T., Matrin 3 is a co-factor for HIV-1 Rev in regulating post-transcriptional viral gene expression. Retrovirology 8 (2011), 1–10.
Ho, Y.-C., Laird, G.M., Siliciano, R.F., Measuring reversal of HIV-1 latency ex vivo using cells from infected individuals. Proc Natl Acad Sci 111 (2014), 6860–6861.
Hosmane, N.N., Kwon, K.J., Bruner, K.M., et al. Proliferation of latently infected CD4+ T cells carrying replication-competent HIV-1: potential role in latent reservoir dynamics. J Exp Med 214 (2017), 959–972.
van Montfort, T., Thomas, A.A.M., Pollakis, G., Paxton, W.A., Dendritic cells preferentially transfer CXCR4-using human immunodeficiency virus type 1 variants to CD4+ T lymphocytes in trans. J Virol 82 (2008), 7886–7896.
Del Prete, G.Q., Haggarty, B., Leslie, G.J., et al. Derivation and characterization of a simian immunodeficiency virus SIVmac239 variant with tropism for CXCR4. J Virol 83 (2009), 9911–9922.
van der Sluis, R.M., van Capel, T.M.M., Speijer, D., et al. Dendritic cell type-specific HIV-1 activation in effector T cells. AIDS 29 (2015), 1003–1014.
Boom, R., Sol, C., Salimans, M., Jansen, C., Wertheim-van Dillen, P., van der Noordaa, J., Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28 (1990), 495–503.
Malnati, M.S., Scarlatti, G., Gatto, F., et al. A universal real-time PCR assay for the quantification of group-M HIV-1 proviral load. Nat Protoc, 3, 2008, 1240.
Fun, A., Mok, H.P., Wills, M.R., Lever, A.M., A highly reproducible quantitative viral outgrowth assay for the measurement of the replication-competent latent HIV-1 reservoir. Sci Rep 7 (2017), 1–10.
Rocha-Perugini, V., Sánchez-Madrid, F., Del Hoyo, G.M., Function and dynamics of tetraspanins during antigen recognition and immunological synapse formation. Front Immunol 6 (2016), 1–12.
Rocha-Perugini, V., González-Granado, J.M., Tejera, E., López-Martín, S., Yañez-Mó, M., Sánchez-Madrid, F., Tetraspanins CD9 and CD151 at the immune synapse support T-cell integrin signaling. Eur J Immunol 44 (2014), 1967–1975.
Besnard, E., Hakre, S., Kampmann, M., et al. The mTOR complex controls HIV latency. Cell Host Microbe 20 (2016), 785–797.
Shin, H.M., Kim, M.H., Kim, B.H., et al. Inhibitory action of novel aromatic diamine compound on lipopolysaccharide-induced nuclear translocation of NF-κB without affecting IκB degradation. FEBS Lett 571 (2004), 50–54.
van Montfort, T., Eggink, D., Boot, M., et al. HIV-1 N-glycan composition governs a balance between dendritic cell-mediated viral transmission and antigen presentation. J Immunol 187 (2011), 4676–4685.
van Montfort, T., Thomas, A.A.M., Krawczyk, P.M., Berkhout, B., Sanders, R.W., Paxton, W.A., Reactivation of neutralized HIV-1 by dendritic cells is dependent on the epitope bound by the antibody. J Immunol 195 (2015), 3759–3768.
Zhang, L., Ramratnam, B., Tenner-Racz, K., et al. Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N Engl J Med 340 (1999), 1605–1613.
Kieffer, T.L., Kwon, P., Nettles, R.E., Han, Y., Ray, S.C., Siliciano, R.F., G → A hypermutation in protease and reverse transcriptase regions of human immunodeficiency virus type 1 residing in resting CD4 + T cells in vivo G3A hypermutation in protease and reverse transcriptase regions of human immunodeficiency virus type 1 resid. J Virol 79 (2005), 1975–1980.
Sanchez, G., Xu, X., Chermann, J.C., Hirsch, I., Accumulation of defective viral genomes in peripheral blood mononuclear cells of human immunodeficiency virus type 1-infected individuals. J Virol 71 (1997), 2233–2240.
Bullen, C.K., Laird, G.M., Durand, C.M., Siliciano, J.D., Siliciano, R.F., New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. Nat Med 20 (2014), 425–429.
Laird, G.M., Bullen, C.K., Rosenbloom, D.I.S., et al. Ex Vivo Analysis Identifies Effective HIV-1 Latency – Reversing Drug Combinations. 125, 2015, 1–12.
Berditchevski, F., Tolias, K.F., Wong, K., Carpenter, C.L., Hemler, M.E., A novel link between integrins, transmembrane-4 superfamily proteins (CD63 and CD81), and phosphatidylinositol 4-kinase. J Biol Chem 6 (1997), 2595–2598.
Mittelbrunn, M., Yáñez-Mó, M., Sancho, D., Ursa, A., Sánchez-Madrid, F., Cutting edge: dynamic redistribution of tetraspanin CD81 at the central zone of the immune synapse in both T lymphocytes and APC. J Immunol 169 (2002), 6691–6695.
Pawson, T., Scott, J.D., Signaling through scaffold, anchoring, and adaptor proteins. Science 278 (1997), 2075–2080 (80-).
Li, Y.Q., Hii, C.S.T., Der, C.J., Ferrante, A., Direct evidence that ERK regulates the production/secretion of interleukin-2 in PHA/PMA-stimulated T lymphocytes. Immunology 96 (1999), 524–528.
Coudronniere, N., Villalba, M., Englund, N., Altman, A., NF-κB activation induced by T cell receptor/CD28 costimulation is mediated by protein kinase C-θ. Proc Natl Acad Sci 97 (2000), 3394–3399.
Darcis, G., Kula, A., Bouchat, S., et al. An in-depth comparison of latency-reversing agent combinations in various in vitro and ex vivo HIV-1 latency models identified bryostatin-1+JQ1 and ingenol-B+JQ1 to potently reactivate viral gene expression. PLoS Pathog, 11, 2015, e1005063.
Mendoza, M.C., Er, E.E., Blenis, J., The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36 (2011), 320–328.
Calne, R.Y., Lim, S., Samaan, A., et al. Rapamycin for Immunosuppression in Organ Allografting. Lancet, 334, 1989, 227.
Ernst, E., Neumann, C.H., Laporte, J.R., Jarnet, J., Woo, J., Immunosuppressive properties of FK-506 and rapamycin. Lancet 2 (1989), 443–444.
Ren, X.-X., Ma, L., Sun, W.-W., et al. Dendritic cells maturated by co-culturing with HIV-1 latently infected Jurkat T cells or stimulating with AIDS-associated pathogens secrete TNF-alpha to reactivate HIV-1 from latency. Virulence, 1(12), 2017.
Donaghy, H., Pozniak, A., Gazzard, B., et al. Patients With HIV-1 Infection Correlates With HIV-1 RNA Virus Load Brief Report Loss of Blood CD11c ϩ Myeloid and CD11c Ϫ Plasmacytoid Dendritic Cells in Patients With HIV-1 Infection Correlates With HIV-1 RNA Virus Load. 98, 2012, 2574–2576.
Lorenzo-Redondo, R., Fryer, H.R., Bedford, T., et al. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 530 (2016), 51–56.
Pasternak, A.O., De Bruin, M., Jurriaans, S., et al. Modest nonadherence to antiretroviral therapy promotes residual HIV-1 replication in the absence of virological rebound in plasma. J Infect Dis 206 (2012), 1443–1452.
Gramatica, A., Greene, W.C., Montano, M., Lymphoid tissue and blood CD4 T cells respond differently to latency-reversing agents: are we testing the right cells?. J Virus Erad, 2015, 2015.
Archin, N.M., Liberty, A.L., Kashuba, A.D., et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487 (2012), 482–485.
Søgaard, O.S., Graversen, M.E., Leth, S., et al. The depsipeptide romidepsin reverses HIV-1 latency in vivo. PLoS Pathog 11 (2015), 1–22.
Rasmussen, T.A., Tolstrup, M., Brinkmann, C.R., et al. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV 1 (2018), e13–e21.
Gutiérrez, C., Serrano-Villar, S., Madrid-Elena, N., et al. Bryostatin-1 for latent virus reactivation in HIV-infected patients on antiretroviral therapy. AIDS 30 (2016), 1385–1392.
Spivak, A.M., Andrade, A., Eisele, E., et al. A pilot study assessing the safety and latency-reversing activity of disulfiram in HIV-1-infected adults on antiretroviral therapy. Clin Infect Dis 58 (2014), 883–890.
Palucka, K., Banchereau, J., Dendritic-cell-based therapeutic cancer vaccines. Immunity 39 (2013), 38–48.
Prins, J.M., Jurriaans, S., van Praag, R.M., et al. Immuno-activation with anti-CD3 and recombinant human IL-2 in HIV-1-infected patients on potent antiretroviral therapy. AIDS 13 (1999), 2405–2410.
Sanyal, A., Mailliard, R.B., Rinaldo, C.R., et al. Novel assay reveals a large, inducible, replication-competent HIV-1 reservoir in resting CD4+T cells. Nat Med 23 (2017), 885–889.
Bunney, T.D., Katan, M., Phosphoinositide signalling in cancer: beyond PI3K and PTEN. Nat Rev Cancer 10 (2010), 342–352.
Downward, J., Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3 (2003), 11–22.