Thiamine and benfotiamine counteract stress-induced aggression, normalize AMPA receptor expression and plasticity markers, and reduce oxidative stress in mice
Gorlova, Anna; Pavlov, Dmitrii; Anthony, Daniel Cet al.
[en] The negative societal impacts associated with the increasing prevalence of violence and aggression is increasing, and, with this rise, is the need to understand the molecular and cellular changes that underpin ultrasound-induced aggressive behavior. In mice, stress-induced aggression is known to alter AMPA receptor subunit expression, plasticity markers, and oxidative stress within the brain. Here, we induced aggression in BALB/c mice using chronic ultrasound exposure and examined the impact of the psychoactive anti-oxidant compounds thiamine (vitamin B1), and its derivative benfotiamine, on AMPA receptor subunit expression, established plasticity markers, and oxidative stress. The administration of thiamine or benfotiamine (200 mg/kg/day) in drinking water decreased aggressive behavior following 3-weeks of ultrasound exposure and benfotiamine, reduced floating behavior in the swim test. The vehicle-treated ultrasound-exposed mice exhibited increases in protein carbonyl and total glutathione, altered AMPA receptor subunits expression, and decreased expression of plasticity markers. These ultrasound-induced effects were ameliorated by thiamine and benfotiamine treatment; in particular both antioxidants were able to reverse ultrasound-induced changes in GluA1 and GluA2 subunit expression, and, within the prefrontal cortex, significantly reversed the changes in protein carbonyl and polysialylated form of neural cell adhesion molecule (PSA-NCAM) expression levels. Benfotiamine was usually more efficacious than thiamine. Thus, the thiamine compounds were able to counteract ultrasound-induced aggression, which was accompanied by the normalization of markers that have been showed to be associated with ultrasound-induced aggression. These commonly used, orally-active compounds may have considerable potential for use in the control of aggression within the community.
Research Center/Unit :
Giga-Neurosciences - ULiège
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Gorlova, Anna
Pavlov, Dmitrii
Anthony, Daniel C
Ponomarev, Evgeny
Sambon, Margaux ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie humaine et pathologique
Shafarevich, Igor
Babaevskaya, Diana
Proshin, Andrey
Lesch, Klaus-Peter
Bettendorff, Lucien ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie humaine et pathologique
Strekalova, Tatyana
Language :
English
Title :
Thiamine and benfotiamine counteract stress-induced aggression, normalize AMPA receptor expression and plasticity markers, and reduce oxidative stress in mice
Abdou, E., Hazell, A.S., Thiamine deficiency: an update of pathophysiologic mechanisms and future therapeutic considerations. Neurochem. Res. 40 (2015), 353–361, 10.1007/s11064-014-1430-z.
Adamczyk, A., Mejias, R., Takamiya, K., Yocum, J., Krasnova, I.N., Calderon, J., Cadet, J.L., Huganir, R.L., Pletnikov, M.V., Wang, T., GluA3-deficiency in mice is associated with increased social and aggressive behavior and elevated dopamine in striatum. Behav. Brain Res. 229 (2012), 265–272, 10.1016/j.bbr.2012.01.007.
Angata, K., Long, J.M., Bukalo, O., Lee, W., Dityatev, A., Wynshaw-Boris, A., Schachner, M., Fukuda, M., Marth, J.D., Sialyltransferase ST8Sia-II assembles a subset of polysialic acid that directs hippocampal axonal targeting and promotes fear behavior. J. Biol. Chem. 279 (2004), 32603–32613, 10.1074/jbc.M403429200.
Angkaw, A.C., Ross, B.S., Pittman, J.O., Kelada, A.M., Valencerina, M.A., Baker, D.G., Post-traumatic stress disorder, depression, and aggression in OEF/OIF veterans. Mil. Med. 178 (2013), 1044–1050, 10.7205/MILMED-D-13-00061.
Araki, R., Ago, Y., Hasebe, S., Nishiyama, S., Tanaka, T., Oka, S., Involvement of prefrontal AMPA receptors in encounter stimulation-induced hyperactivity in isolation-reared mice. Int. J. Neuropsychopharmacol. 17 (2014), 883–893, 10.1017/S1461145713001582.
Arnold, R.S., Shi, J., Murad, E., Whalen, A.M., Sun, C.Q., Polavarapu, R., Parthasarathy, S., Petros, J.A., Lambeth, J.D., Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc. Natl. Acad. Sci. U.S.A. 98 (2001), 5550–5555, 10.1073/pnas.101505898.
Arnsten, A.F.T., Stress signalling pathways that impair prefrontal cortex structure and function. Nat. Rev. Neurosci. 10 (2009), 410–422, 10.1038/nrn2648.
Azenha, D., Alves, M., Matos, R., Santa, J.F., Silva, B., Cordeiro, C., Vieira, D.N., Ambrόsio, A.M., Male specific association between the 5-HTR6 gene 267C/T SNP and suicide in the Portuguese population. Neurosci. Lett. 466 (2009), 128–130, 10.1016/j.neulet.2009.09.040.
Bazhenova, N., Waider, J., Bonopartes, D., Veniaminova, E., Markova, N., Costa-Nunes, J., Zubkov, E., Gorlova, A., Pavlov, D., Morozova, A., Lesch, K.P., Strekalova, T., Stress-induced aggression in mice and evidence for preventive effects of drugs with pro-neurogenetic activity. Gottingen Neuroscience Meeting, 2017, 170 https://www.nwg-goettingen.de/2017/upload/file/Program_Goettingen2017.pdf.
Been, L.E., Moore, K.M., Kennedy, B.C., Meisel, R.L., Metabotropic Glutamate Receptor and Fragile X Signaling in a Female Model of Escalated Aggression. Biol. Psychiatry 79 (2016), 685–692, 10.1016/j.biopsych.2015.07.021.
Benton, D., Donohoe, R.T., The effects of nutrients on mood. Publ. Health Nutr. 3 (1999), 403–409, 10.1017/S1368980099000555.
Bettendorff, L., Lakaye, B., Kohn, G., Wins, P., Thiamine triphosphate: a ubiquitous molecule in search of a physiological role. Metab. Brain Dis. 29 (2014), 1069–1082, 10.1007/s11011-014-9509-4.
Beurel, E., Grieco, S.F., Jope, R.S., Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol. Ther. 148 (2015), 114–131, 10.1016/j.pharmthera.2014.11.016.
Boufleur, N., Antoniazzi, C.T., Pase, C.S., Benvegnú, D.M., Dias, V.T., Segat, H.J., Roversi, K., Roversi, K., Nora, M.D., Koakoskia, G., Rosa, J.G., Barcellos, L.J., Bürger, M.E., Neonatal handling prevents anxiety-like symptoms in rats exposed to chronic mild stress: behavioral and oxidative parameters. Stress 16 (2013), 321–330, 10.3109/10253890.2012.723075.
Boyko, A., Ksenofontov, A., Ryabov, S., Baratova, L., Graf, A., Bunik, V., Delayed Influence of Spinal Cord Injury on the Amino Acids of NO• Metabolism in Rat Cerebral Cortex Is Attenuated by Thiamine. Front. Med., 15, 2018, 249, 10.3389/fmed.2017.00249 2018.
Bozic, I., Savic, D., Stevanovic, I., Pekovic, S., Nedeljkovic, N., Lavrnja, I., Benfotiamine upregulates antioxidative system in activated BV-2 microglia cells. Front. Cell. Neurosci., 9, 2015, 351, 10.3389/fncel.2015.00351.
Bullock, S.P., Rogers, L.J., Glutamate-induced asymmetry in the sexual and aggressive behavior of young chickens. Pharmacol. Biochem. Behav. 24 (1986), 549–554, 10.1016/0091-3057(86)90556-3.
Bunik, V.I., Thiamin-dependent enzymes: new perspectives from the interface between chemistry and biology. FEBS J. 280 (2013), 63–73, 10.1111/febs.12589.
Calandreau, L., Márquez, C., Bisaz, R., Fantin, M., Sandi, C., Differential impact of polysialyltransferase ST8SiaII and ST8SiaIV knockout on social interaction and aggression. Genes Brain Behav. 9 (2010), 958–967, 10.1111/j.1601-183X.2010.00635.x.
Caspi, A., McClay, J., Moffitt, T.E., Mill, J., Martin, J., Craig, I.W., Taylor, A., Poulton, R., Role of genotype in the cycle of violence in maltreated children. Science (New York, N.Y.) 297 (2002), 851–854, 10.1126/science.1072290.
Chrousos, G.P., Gold, P.W., The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. J. Am. Med. Assoc. 267 (1992), 1244–1252, 10.1001/jama.267.9.1244.
Clark, C.R., Galletly, C.A., Ash, D.J., Moores, K.A., Penrose, R.A., McFarlane, A.C., Evidence-based medicine evaluation of electrophysiological studies of the anxiety disorders. Clin. EEG Neurosci. 40 (2009), 84–112, 10.1177/155005940904000208.
Cline, B.H., Anthony, D.C., Lysko, A., Dolgov, O., Anokhin, K., Schroeter, C., Malin, D., Kubatiev, A., Steinbusch, H.W., Lesch, K.P., Strekalova, T., Lasting downregulation of the lipid peroxidation enzymes in the prefrontal cortex of mice susceptible to stress-induced anhedonia. Behav. Brain Res. 276 (2015), 118–129, 10.1016/j.bbr.2014.04.037.
Cline, B.H., Costa-Nunes, J.P., Cespuglio, R., Markova, N., Santos, A.I., Bukhman, Y.V., Kubatiev, A., Steinbusch, H.W., Lesch, K.P., Strekalova, T., Dicholine succinate, the neuronal insulin sensitizer, normalizes behavior, REM sleep, hippocampal pGSK3 beta and mRNAs of NMDA receptor subunits in mouse models of depression. Front. Behav. Neurosci. 26 (2015), 9–37, 10.3389/fnbeh.2015.00037.
Coccaro, E.F., Lee, R., Vezinab, P., Cerebrospinal fluid glutamate concentration correlates with impulsive aggression in human subjects. J. Psychiatr. Res. 47 (2013), 1247–1253, 10.1016/j.jpsychires.2013.05.001.
Coccaro, E.F., Lee, R., Gozal, D., Elevated Plasma Oxidative Stress Markers in Individuals With Intermittent Explosive Disorder and Correlation With Aggression in Humans. Biol. Psychiatry 79 (2016), 127–135, 10.1016/j.biopsych.2014.01.014.
Costa-Nunes, J., Zubareva, O., Araújo-Correia, M., Valença, A., Schroeter, C.A., Pawluski, J.L., Vignisse, J., Steinbusch, H., Hermes, D., Phillipines, M., Steinbusch, H.M., Strekalova, T., Altered emotionality, hippocampus-dependent performance and expression of NMDA receptor subunit mRNAs in chronically stressed mice. Stress 17 (2014), 108–116, 10.3109/10253890.2013.872619.
Couch, Y., Anthony, D.C., Dolgov, O., Revischin, A., Festoff, B., Santos, A.I., Steinbusch, H.W., Strekalova, T., Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia. Brain Behav. Immun. 29 (2013), 136–146, 10.1016/j.bbi.2012.12.017.
Couch, Y., Trofimov, A., Markova, N., Nikolenko, V., Steinbusch, H.W., Chekhonin, V., Schroeter, C., Lesch, K.P., Low-dose lipopolysaccharide (LPS) inhibits aggressive and augments depressive behaviours in a chronic mild stress model in mice. J. Neuroinflammation 13 (2016), 1–8, 10.1186/s12974-016-0572-0.
Constantini, F., D'Amato, F., Ultrasonic vocalization in mice and rats: social contexts and functions. Acta Zool. 52 (2006), 619–633.
Daniels, W.M., Marais, L., Stein, D.J., Russell, V.A., Exercise normalizes altered expression of proteins in the ventral hippocampus of rats subjected to maternal separation. Exp. Physiol. 97 (2012), 239–247, 10.1113/expphysiol.2011.061176.
Diehl, L.A., Alvares, L.O., Noschang, C., Engelke, D., Andreazza, A.C., Gonçalves, C.A., Quillfeldt, J.A., Dalmaz, C., Long-lasting effects of maternal separation on an animal model of post-traumatic stress disorder: effects on memory and hippocampal oxidative stress. Neurochem. Res. 37 (2012), 700–707, 10.1007/s11064-011-0660-6.
Ebuehi, O.A., Ayinde, O.C., Neurobehavioural and neurotoxic effects of L-ascorbic acid and L-tryptophan in lead exposed rats. Niger. Q. J. Hosp. Med. 22:4 (2012 Oct-Dec), 240–244.
El-Tarras, Ael-S., Attia, H.F., Soliman, M.M., El Awady, M.A., Amin, A.A., Neuroprotective effect of grape seed extract against cadmium toxicity in male albino rats. Int. J. Immunopathol. Pharmacol. 29 (2016), 398–407, 10.1177/0394632016651447.
Fan, D., Grooms, S.Y., Araneda, R.C., Johnson, A.B., Dobrenis, K., Kessler, J.A., Zukin, R.S., AMPA receptor protein expression and function in astrocytes cultured from hippocampus. J. Neurosci. Res. 57 (1999), 557–571.
Fanning, J.R., Lee, R., Gozal, D., Coussons-Read, M., Coccaro, E.F., Childhood trauma and parental style: Relationship with markers of inflammation, oxidative stress, and aggression in healthy and personality disordered subjects. Biol. Psychol. 112 (2015), 56–65, 10.1016/j.biopsycho.2015.09.003.
Fanning, J.R., Keedy, S., Berman, M.E., Lee, R., Coccaro, E.F., Neural Correlates of Aggressive Behavior in Real Time: a Review of fMRI Studies of Laboratory Reactive Aggression. Curr Behav Neurosci Rep 2 (2017), 138–150, 10.1007/s40473-017-0115-8.
Fontes, M.A., Xavier, C.H., Marins, F.R., Limborço-Filho, M., Vaz, G.C., Müller-Ribeiro, F.C., Nalivaiko, E., Emotional stress and sympathetic activity: Contribution of dorsomedial hypothalamus to cardiac arrhythmias. Brain Res. 1554 (2014), 49–58, 10.1016/j.brainres.2014.01.043.
Garcia-Alloza, M., Hirst, W.D., Chen, C.P., Lasheras, B., Francis, P.T., Ramírez, M.J., Differential involvement of 5-HT(1B/1D) and 5-HT6 receptors in cognitive and non-cognitive symptoms in Alzheimer's disease. Neuropsychopharmacology 29 (2004), 410–416, 10.1038/sj.npp.1300330.
Ghaleiha, A., Davari, H., Jahangard, L., Haghighi, M., Ahmadpanah, M., Seifrabie, M.A., Bajoghli, H., Holsboer-Trachsler, E., Brand, S., Adjuvant thiamine improved standard treatment in patients with major depressive disorder: results from a randomized, double-blind, and placebo-controlled clinical trial. Eur. Arch. Psychiatry Clin. Neurosci. 266 (2016), 695–702, 10.1007/s00406-016-0685-6.
Gvozdjáková, A., Kucharská, J., Ostatníková, D., Babinská, K., Nakládal, D., Crane, F.L., Ubiquinol improves symptoms in children with autism. Oxid Med Cell Longev, 2014, 2014, 798957, 10.1155/2014/798957 2014.
Hamazaki, T., Sawazaki, S., Itomura, M., Asaoka, E., Nagao, Y., Nishimura, N., Yazawa, K., Kuwamori, T., Kobayashi, M., The effect of docosahexaenoic acid on aggression in young adults. A placebo-controlled double-blind study. J. Clin. Invest. 97 (1996), 1129–1133.
Henley, J.M., Wilkinson, K.A., Dialogues AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. Clin. Neurosci. 15 (2013), 11–27.
Hollmann, M., O'Shea-Greenfield, A., Rogers, S.W., Heinemann, S., Cloning by functional expression of a member of the glutamate receptor family. Nature 342 (1989), 643–668, 10.1038/342643a0.
Hume, R.I., Dingledine, R., Heinemann, S.F., Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253 (1991), 1028–1031 10/1126/science.1653450.
Keinänen, K., Wisden, W., Sommer, B., Werner, P., Herb, A., Verdoorn, T.A., Sakmann, B., Seeburg, P.H., A family of AMPA-selective glutamate receptors. Science 249 (1990), 556–560, 10.1126/science.2166337.
Kessler, R.C., Sampson, N.A., Berglund, P., Gruber, M.J., Al-Hamzawi, A., Andrade, L., Bunting, B., Demyttenaere, K., Florescu, S., de Girolamo, G., Gureje, O., He, Y., Hu, C., Huang, Y., Karam, E., Kovess-Masfety, V., Lee, S., Levinson, D., Medina Mora, M.E., Moskalewicz, J., Nakamura, Y., Navarro-Mateu, F., Browne, M.A., Piazza, M., Posada-Villa, J., Slade, T., Ten Have, M., Torres, Y., Vilagut, G., Xavier, M., Zarkov, Z., Shahly, V., Wilcox, M.A., Anxious and non-anxious major depressive disorder in the World Health Organization World Mental Health Surveys. Epidemiol. Psychiatr. Sci. 24 (2015), 210–226, 10.1017/S2045796015000189.
Khlghatyan, J.1., Evstratova, A., Chamberland, S., Marakhovskaia, A., Bahremand, A., Toth, K., Beaulieu, J.M., Mental Illnesses-Associated Fxr1 and Its Negative Regulator Gsk3β Are Modulators of Anxiety and Glutamatergic Neurotransmission. Front. Mol. Neurosci. 12 (2018), 11–119, 10.3389/fnmol.2018.00119.
Kim, J.J., Haller, J., Glucocorticoid hyper- and hypofunction: stress effects on cognition and aggression. Ann. N. Y. Acad. Sci. 1113 (2007), 291–303, 10.1196/annals.1391.014.
Kuloglu, M., Atmaca, M., Tezcan, E., Gecici, O., Ustundag, B., Bulut, S., Antioxidant enzyme and malondialdehyde levels in patients with panic disorder. Neuropsychobiology 46 (2002), 186–189, 10.1159/000067810.
Lee, S.H., Valtschanoff, J.G., Kharazia, V.N., Weinberg, R., Sheng, M., Biochemical and morphological characterization of an intracellular membrane compartment containing AMPA receptors. Neuropharmacology 41 (2001), 680–692, 10.1016/S0028-3908(01)00124-1.
Lento, W., Ito, T., Zhao, C., Harris, J.R., Huang, W., Jiang, C., Owzar, K., Piryani, S., Racioppi, L., Chao, N., Reyal, T., Loss of β-catenin triggers oxidative stress and impairs hematopoietic regeneration. Genes Dev. 28 (2014), 995–1004, 10.1101/gad.231944.113.
Leroy, F., Park, J., Asok, A., Brann, D.H., Meira, T., Boyle, L.M., Buss, E.W., Kandel, E.R., Siegelbaum, S.A., A circuit from hippocampal CA2 to lateral septum disinhibits social aggression. Nature, 9, 2018, 4163, 10.1038/s41467-018-06501-w.
Lesch, K.P., Araragi, N., Waider, J., van den Hove, D., Gutknecht, L., Targeting brain serotonin synthesis: insights into neurodevelopmental disorders with long-term outcomes related to negative emotionality, aggression and antisocial behaviour. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367 (2012), 2426–2443, 10.1098/rstb.2012.0039.
Machado, C.J., Bachevalier, J., The impact of selective amygdala, orbital frontal cortex, or hippocampal formation lesions on established social relationships in rhesus monkeys (Macaca mulatta). Behav. Neurosci. 120 (2006), 761–786, 10.1037/0735-7044.120.4.761.
Maguschak, K.A., Ressler, K.J., A role for WNT/β-catenin signaling in the neural mechanisms of behavior. J Neuroimmune Pharmacol 7 (2012), 763–773, 10.1007/s11481-012-9350-7.
Malatynska, E., Steinbusch, H.W., Redkozubova, O., Bolkunov, A., Kubatiev, A., Yeritsyan, N.B., Vignisse, J., Bachurin, S., Strekalova, T., Anhedonic-like traits and lack of affective deficits in 18-month-old C57BL/6 mice: implications for modeling elderly depression. Exp. Gerontol. 47 (2012), 552–564, 10.1016/j.exger.2012.04.010.
Malki, K., Tosto, M.G., Pain, O., Sluyter, F., Mineur, Y.S., Crusio, W.E., de Boer, S., Sandnabba, K.N., Kesserwani, J., Robinson, E., Schalkwyk, L.C., Asherson, P., Comparative mRNA analysis of behavioral and genetic mouse models of aggression. Am J Med Genet B Neuropsychiatr Genet 171 (2016), 427–436, 10.1002/ajmg.b.32424 Epub 2016 Feb 17.
Marais, L., Stein, D.J., Daniels, W.M., Exercise increases BDNF levels in the striatum and decreases depressive-like behavior in chronically stressed rats. Metab. Brain Dis. 24 (2009), 587–597, 10.1007/s11011-009-9157-2.
Marcos, B., García-Alloza, M., Gil-Bea, F.J., Chuang, T.T., Francis, P.T., Chen, C.P., Tsang, S.W., Lai, M.K., Ramirez, M.J., Involvement of an altered 5-HT-6 receptor function in behavioral symptoms of Alzheimer's disease. J Alzheimers Dis 14 (2008), 43–50, 10.3233/JAD-2008-14104.
Markova, N., Bazhenova, N., Anthony, D.C., Vignisse, J., Svistunov, A., Lesch, K.P., Bettendorff, L., Strekalova, T., Thiamine and benfotiamine improve cognition and ameliorate GSK-3β-associated stress-induced behaviours in mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 75 (2017), 148–156, 10.1016/j.pnpbp.2016.11.001.
Meneses, A., Neural activity, memory, and dementias: serotonergic markers. Behav. Pharmacol. 28 (2017), 132–141, 10.1097/FBP.0000000000000279.
Mkrtchyan, G., Aleshin, V., Parkhomenko, Y., Kaehne, T., Di Salvo, M.L., Parroni, A., Contestabile, R., Vovk, A., Bettendorff, L., Bunik, V., Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis. Sci. Rep., 5, 2015, 12583, 10.1038/srep12583.
Mkrtchyan, G.V., Üçal, M., Müllebner, A., Dumitrescu, S., Kames, M., Moldzio, R., Molcanyi, M., Schaefer, S., Weidinger, A., Schaefer, U., Hescheler, J., Duvigneau, J.C., Redl, H., Bunik, V.I., Kozlov, A.V., Thiamine preserves mitochondrial function in a rat model of traumatic brain injury, preventing inactivation of the 2-oxoglutarate dehydrogenase complex. Biochim. Biophys. Acta 1859 (2018), 925–931, 10.1016/j.bbabio.2018.05.005.
Morozova, A., Zubkov, E., Strekalova, T., Kekelidze, Z., Storozeva, Z., Schroeter, C.A., Bazhenova, N., Lesch, K.P., Cline, B.H., Chekhonin, V., Ultrasound of alternating frequencies and variable emotional impact evokes depressive syndrome in mice and rats. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 68 (2016), 52–63, 10.1016/j.pnpbp.2016.03.003.
Muñoz-Blanco, J., Yusta, B., Cordoba, F., Differential distribution of neurotransmitter amino acids from the limbic system of aggressive and non-aggressive bull strains. Pharmacol. Biochem. Behav. 25 (1986), 71–75 https://doi.org/10.1016/0091-3057(86)90232-7.
Newcombe, J., Uddin, A., Dove, R., Patel, B., Turski, L., Nishizawa, Y., Smith, T., Glutamate receptor expression in multiple sclerosis lesions. Brain Pathol. 18 (2008), 52–61, 10.1111/j.1750-3639.2007.00101.x.
Ng, F., Berk, M., Dean, O., Bush, A.I., Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications. Int. J. Neuropsychopharmacol. 15 (2008), 1–26, 10.1017/S1461145707008401.
Okazawa, H., Ikawa, M., Tsujikawa, T., Kiyono, Y., Yoneda, M., Brain imaging for oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Q. J. Nucl. Med. Mol. Imaging 58 (2014), 387–397, 10.1016/j.jns.2017.08.741.
Pan, X., Gong, N., Zhao, J., Yu, Z., Gu, F., Chen, J., Sun, X., Zhao, L., Yu, M., Xu, Z., Dong, W., Qin, Y., Fei, G., Zhong, C., Xu, T.L., Powerful beneficial effects of benfotiamine on cognitive impairment and beta-amyloid deposition in amyloid precursor protein/presenilin-1 transgenic mice. Brain 133 (2010), 1342–1351, 10.1093/brain/awq069.
Pan, X., Chen, Z., Fei, G., Pan, S., Bao, W., Ren, S., Guan, Y., Zhong, C., Long-Term Cognitive Improvement After Benfotiamine Administration in Patients with Alzheimer's Disease. Neurosci Bull 32 (2016), 591–596, 10.1007/s12264-016-0067-0.
Partyka, A., Wasik, A., Jastrzębska-Więsek, M., Mierzejewski, P., Bieńkowski, P., Kołaczkowski, M., Wesołowska, A., ADN-1184, a monoaminergic ligand with 5-HT6/7 receptor antagonist action, exhibits activity in animal models of anxiety. Naunyn-Schmiedeberg's Arch. Pharmacol. 389 (2016), 593–602, 10.1007/s00210-016-1229-3.
Patki, G., Solanki, N., Atrooz, F., Allam, F., Salim, S., Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress. Brain Res. 1539 (2013), 73–86, 10.1016/j.brainres.2013.09.033.
Patki, G., Atrooz, F., Alkadhi, I., Solanki, N., Salim, S., High aggression in rats is associated with elevated stress, anxiety-like behavior, and altered catecholamine content in the brain., 584, 2014, 308–313, 10.1016/j.neulet.2014.10.051.
Pavlov, D., Markova, N., Bettendorff, L., Chekhonin, V., Pomytkin, I., Lioudyno, V., Svistunov, A., Ponomarev, E., Lesch, K.P., Strekalova, T., Elucidating the functions of brain GSK3α: Possible synergy with GSK3β upregulation and reversal by antidepressant treatment in a mouse model of depressive-like behaviour. Behav. Brain Res. 335 (2017), 122–127, 10.1016/j.bbr.2017.08.018.
Pavlov, D., Bettendorff, L., Gorlova, A., Olkhovik, A., Kalueff, A.V., Ponomarev, E.D., Inozemtsev, A., Chekhonin, V., Lesсh, K.P., Anthony, D.C., Strekalova, T., Neuroinflammation and aberrant hippocampal plasticity in a mouse model of emotional stress evoked by exposure to ultrasound of alternating frequencies. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 90 (2019), 104–116, 10.1016/j.pnpbp.2018.11.014.
Pereira, M., Martynhak, B.J., Andreatini, R., Svenningsson, P., 5-HT6 receptor agonism facilitates emotional learning. Front. Pharmacol. 16 (2015), 6–200, 10.3389/fphar.2015.00200.
Rada, P., Rojo, A.I., Evrard-Todeschi, N., Innamorato, N.G., Cotte, A., Jaworski, T., Tobón-Velasco, J.C., Devijver, H., García-Mayoral, M.F., Van Leuven, F., Structural and functional characterization of Nrf2 degradation by the glycogen synthase kinase 3/β-TrCP axis. Mol. Cell Biol. 32 (2012), 3486–3499, 10.1128/MCB.00180-12.
Raj, V., Ojha, S., Howarth, F.C., Belur, P.D., Subramanya, S.B., Therapeutic potential of benfotiamine and its molecular targets. Eur. Rev. Med. Pharmacol. Sci. 22 (2018), 3261–3273, 10.26355/eurrev_201805_15089.
Rammal, H., Bouayed, J., Soulimani, R., A direct relationship between aggressive behavior in the resident/intruder test and cell oxidative status in adult male mice. Eur. J. Pharmacol. 627 (2010), 173–176, 10.1016/j.ejphar.2009.11.001.
Roy, A., Jana, A., Yatish, K., Freidt, M.B., Fung, Y.K., Martinson, J.A., Pahan, K., Reactive oxygen species up-regulate CD11b in microglia via nitric oxide: Implications for neurodegenerative diseases. Free Radic. Biol. Med. 45 (2008), 686–699, 10.1016/j.freeradbiomed.2008.05.026.
Salminen, L.E., Paul, R.H., Oxidative stress and genetic markers of suboptimal antioxidant defense in the aging brain: a theoretical review. Rev. Neurosci. 25 (2014), 805–819, 10.1515/revneuro-2014-0046.
Sanchez-Ramirez, G.M., Caram-Salas, N.L., Rocha-Gonzalez, H.I., Vidal-Cantu, G.C., Medina-Santillan, R., Reyes-Garcia, G., Benfotiamine relieves inflammatory and neuropathic pain in rats. Eur. J. Pharmacol. 530 (2006), 48–53, 10.1016/j.ejphar.2005.11.016.
Schiavone, S., Colaianna, M., Curtis, L., Impact of early life stress on the pathogenesis of mental disorders: relation to brain oxidative stress. Curr. Pharmaceut. Des. 21 (2015), 1404–1412, 10.2174/1381612821666150105143358.
Schmid, U., Stopper, H., Heidland, A., Schupp, N., Benfotiamine exhibits direct antioxidative capacity and prevents induction of DNA damage in vitro. Diabetes Metab. Res. 24 (2008), 371–377, 10.1002/dmrr.860.
Shimizu, K., Kurosawa, N., Seki, K., The role of the AMPA receptor and 5-HT(3) receptor on aggressive behavior and depressive-like symptoms in chronic social isolation-reared mice. Physiol. Behav. 153 (2016), 70–83, 10.1016/j.physbeh.2015.10.026.
Shimshek, D.R., Bus, T., Grinevich, V., Single, F.N., Mack, V., Sprengel, R., Spergel, D.J., Seeburg, P.H., Impaired reproductive behavior by lack of GluR-B containing AMPA receptors but not of NMDA receptors in hypothalamic and septal neurons. Mol. Endocrinol. 20 (2006), 219–231, 10.1210/me.2005-0262.
Shoeb, M., Ramana, K.V., Anti-inflammatory effects of benfotiamine are mediated through the regulation of the arachidonic acid pathway in macrophages. Free Radic. Biol. Med. 52 (2012), 182–190, 10.1016/j.freeradbiomed.2011.10.444.
Siever, L.J., Neurobiology of aggression and violence. Am. J. Psychiatry 165 (2008), 429–442, 10.1176/appi.ajp.2008.07111774.
Solanki, N., Atrooz, F., Asghar, S., Salim, S., Tempol protects sleep-deprivation induced behavioral deficits in aggressive male Long-Evans rats. Neurosci. Lett. 612 (2016), 245–250, 10.1016/j.neulet.2015.12.032.
Song, I., Huganir, R.L., Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25 (2002), 578–588, 10.1016/S0166-2236(02)02270-1.
Strekalova, T., Steinbusch, H., Measuring behavior with chronic stress depression model in mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 34 (2010), 348–361, 10.1016/j.pnpbp.2009.12.014.
Strekalova, T., Evans, M., Chernopiatko, A., Couch, Y., Costa-Nunes, J., Cespuglio, R., Chesson, L., Vignisse, J., Steinbusch, H.W., Anthony, D.C., Pomytkin, I., Lesch, K.P., Deuterium content of water increases depression susceptibility: the potential role of a serotonin-related mechanism. Behav. Brain Res. 277 (2015), 237–244, 10.1016/j.bbr.2014.07.039.
Strekalova, T., Bahzenova, N., Trofimov, A., Schmitt-Böhrer, A.G., Markova, N., Grigoriev, V., Zamoyski, V., Serkova, T., Redkozubova, O., Vinogradova, D., Umriukhin, A., Fisenko, V., Lillesaar, C., Shevtsova, E., Sokolov, V., Aksinenko, A., Lesch, k.-P., Bachurin, S., Pro-neurogenic, Memory-Enhancing and Anti-stress Effects of DF302, a Novel Fluorine Gamma-Carboline Derivative with Multi-target Mechanism of Action. Mol. Neurobiol. 55 (2018), 335–349, 10.1007/s12035-017-0745-6.
Stutzman, D., Dopheide, J., Acetylcysteine for treatment of autism spectrum disorder symptoms. Am. J. Health Syst. Pharm. 72:22 (2015 Nov 15), 1956–1959, 10.2146/ajhp150072.
Sun, X., Li, X., Pan, R., Xu, Y., Wang, Q., Song, M., Total Saikosaponins of Bupleurum yinchowense reduces depressive, anxiety-like behavior and increases synaptic proteins expression in chronic corticosterone-treated mice. BMC Complement Altern. Med., 18, 2018, 117, 10.1186/s12906-018-2186-9.
Tapias, V., Jainuddin, S., Ahuja, M., Stack, C., Elipenahli, C., Vignisse, J., Gerges, M., Starkova, N., Xu, H., Starkov, A.A., Bettendorff, L., Hushpulian, D.M., Smirnova, N.A., Gazaryan, I.G., Kaidery, N.A., Wakade, S., Calingasan, N.Y., Thomas, B., Gibson, G.E., Dumont, M., Beal, M.F., Benfotiamine treatment activates the Nrf2/ARE pathway and is neuroprotective in a transgenic mouse model of tauopathy. Hum. Mol. Genet. 27 (2018), 2874–2892, 10.1093/hmg/ddy201.
Toyoda, H., Zhao, M.G., Ulzhöfer, B., Wu, L.J., Xu, H., Seeburg, P.H., Sprengel, R., Kuner, R., Zhuo, M., Roles of the AMPA receptor subunit GluA1 but not GluA2 in synaptic potentiation and activation of ERK in the anterior cingulate cortex. Mol. Pain, 5, 2009, 46, 10.1186/1744-8069-5-46.
Tsai, S.J., Chiu, H.J., Wang, Y.C., Hong, C.J., Association study of serotonin-6 receptor variant (C267T) with schizophrenia and aggressive behavior. Neurosci. Lett. 271 (1999), 135–137, 10.1016/S0304-3940(99)00542-X.
Veenema, A.H., Neumann, I.D., Neurobiological mechanisms of aggression and stress coping: a comparative study in mouse and rat selection lines. Brain Behav. Evol. 70 (2007), 274–285, 10.1159/000105491.
Vekovischeva, O.Y., Aitta-Aho, T., Echenko, O., Kankaanpää, A., Seppälä, T., Honkanen, A., Sprengel, R., Korpi, E.R., Reduced aggression in AMPA-type glutamate receptor GluR-A subunit-deficient mice. Genes Brain Behav. 3 (2004), 253–265, 10.1111/j.1601-1848.2004.00075.x.
Vekovischeva, O.Y., Aitta-aho, T., Verbitskaya, E., Sandnabba, K., Korpi, E.R., Acute effects of AMPA-type glutamate receptor antagonists on intermale social behavior in two mouse lines bidirectionally selected for offensive aggression. Pharmacol. Biochem. Behav. 87 (2007), 241–249, 10.1016/j.pbb.2007.04.020.
Vignisse, J., Steinbusch, H.W.M., Bolkunov, A., Nunes, J., Santos, A.I., Grandfils, C., Bachurin, S., Strekalova, T., Dimebon enhances hippocampus-dependent learning in both appetitive and inhibitory memory tasks in mice. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 35 (2011), 510–522, 10.1016/j.pnpbp.2010.12.007.
Vignisse, J., Sambon, M., Gorlova, A., Pavlov, D., Caron, N., Malgrange, B., Shevtsova, E., Svistunov, A., Anthony, D., Markova, N., Bazhenova, N., Coumans, B., Lakaye, B., Wins, P., Strekalova, T., Bettendorff, L., Thiamine and benfotiamine prevent stress-induced suppression of hippocampal neurogenesis in mice exposed to predation without affecting brain thiamine diphosphate levels. Mol. Cell. Neurosci. 82 (2017), 126–136, 10.1016/j.mcn.2017.05.005.
Volvert, M.L., Seyen, S., Piette, M., Evrard, B., Gangolf, M., Plumier, J.C., Bettendorff, L., Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives. BMC Pharmacol., 8, 2008, 10, 10.1186/1471-2210-8-10.
Winkler, D., Daher, F., Wüstefeld, L., Hammerschmidt, K., Poggi, G., Seelbach, A., Krueger-Burg, D., Vafadari, B., Ronnenberg, A., Liu, Y., Kaczmarek, L., Schlüter, O.M., Ehrenreich, H., Dere, E., Hypersocial behavior and biological redundancy in mice with reduced expression of PSD95 or PSD93. Behav. Brain Res. 352 (2017), 35–45, 10.1016/j.bbr.2017.02.011.
Yun, H.M., Rhim, H., The serotonin-6 receptor as a novel therapeutic target. Exp. Neurobiol. 20 (2011), 159–168, 10.5607/en.2011.20.4.159.
Zhang, X., He, X., Chen, Q., Lu, J., Rapposelli, S., Pi, R., A review on the hybrids of hydroxycinnamic acid as multi-target-directed ligands against Alzheimer's disease. Bioorg. Med. Chem. 26 (2018), 543–550, 10.1016/j.bmc.2017.12.042.