[en] Abstract
Purpose: Here, we investigated the clinical relevance of an unprecedented combination of three biomarkers in triple-negative breast cancer (TNBC), both in human samples and in patient-derived xenografts of TNBC (PDX-TNBC): EGFR, its recently identified partner (MT4-MMP), and retinoblastoma protein (RB).Experimental Design: IHC analyses were conducted on human and PDX-TNBC samples to evaluate the production of the three biomarkers. The sensitivity of cancer cells expressing or not MT4-MMP to anti-EGFR (erlotinib) or anti-CDK4/6 inhibitor (palbociclib) was evaluated in vitro in 2D and 3D proliferation assays and in vivo using xenografts and PDX-TNBC displaying different RB, MT4-MMP, and EGFR status after single (erlotinib or palbociclib) or combined (erlotinib + palbociclib) treatments.Results: EGFR and MT4-MMP were coexpressed in >70% of TNBC samples and PDX-TNBC, among which approximately 60% maintained RB expression. Notably, approximately 50% of all TNBC and PDX-TNBC expressed the three biomarkers. Single erlotinib and palbociclib treatments drastically reduced the in vitro proliferation of cells expressing EGFR and MT4-MMP when compared with control cells. Both TNBC xenografts and PDX expressing MT4-MMP, EGFR, and RB, but not PDX-TNBC with RB loss, were sensitive to erlotinib and palbociclib with an additive effect of combination therapy. Moreover, this combination was efficient in another PDX-TNBC expressing the three biomarkers and resistant to erlotinib alone.Conclusions: We defined a new association of three biomarkers (MT4-MMP/EGFR/RB) expressed together in 50% of TNBC and demonstrated its usefulness to predict the TNBC response to anti-EGFR and anti-CDK4/6 drugs used in single or combined therapy.
Disciplines :
Oncology
Author, co-author :
FOIDART, Pierre ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service d'oncologie médicale
Yip, Cassandre ; Université de Liège - ULiège > Département des sciences cliniques > Labo de biologie des tumeurs et du développement
Radermacher, Jean
Blacher, Silvia ; Université de Liège - ULiège > Département des sciences cliniques > Labo de biologie des tumeurs et du développement
Lienard, Mehdi ; Université de Liège - ULiège > Département des sciences cliniques > Labo de biologie des tumeurs et du développement
MONTERORUIZ, Laetitia ; Centre Hospitalier Universitaire de Liège - CHU > Département ULiège > GIGA
Maquoi, Erik ; Université de Liège - ULiège > Département des sciences cliniques > Labo de biologie des tumeurs et du développement
Montaudon, Elodie
Chateau-Joubert, Sophie
COLLIGNON, Joëlle ; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service d'oncologie médicale
Coibion, Michel
Jossa, Veronique
Marangoni, Elisabetta
Noël, Agnès ; Université de Liège - ULiège > Département des sciences cliniques > Labo de biologie des tumeurs et du développement
Sounni, Nor Eddine ✱; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire
JERUSALEM, Guy ✱; Centre Hospitalier Universitaire de Liège - CHU > Département de médecine interne > Service d'oncologie médicale
Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011;121:2750–67.
Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 2015;21:1688–98.
Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, et al. PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res 2014;2:361–70.
Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 2007;13:4429–34.
Carey LA, Rugo HS, Marcom PK, Mayer EL, Esteva FJ, Ma CX, et al. TBCRC 001: randomized phase II study of cetuximab in combination with carbo-platin in stage IV triple-negative breast cancer. J Clin Oncol 2012;30: 2615–23.
Carey L, Winer E, Viale G, Cameron D, Gianni L. Triple-negative breast cancer: disease entity or title of convenience? Nat Rev Clin Oncol 2010;7:683–92.
Tredan O, Campone M, Jassem J, Vyzula R, Coudert B, Pacilio C, et al. Ixabepilone alone or with cetuximab as first-line treatment for advanced/ metastatic triple-negative breast cancer. Clin Breast Cancer 2015;15:8–15.
Bartholomeusz C, Yamasaki F, Saso H, Kurisu K, Hortobagyi GN, Ueno NT. Gemcitabine overcomes erlotinib resistance in EGFR-overexpressing cancer cells through downregulation of Akt. J Cancer 2011;2:435–42.
Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, et al. PD 0332991, a selective cyclin D kinase 4/6 inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-positive human breast cancer cell lines in vitro. Breast Cancer Res 2009;11:R77.
DeMichele A, Clark AS, Tan KS, Heitjan DF, Gramlich K, Gallagher M, et al. CDK 4/6 inhibitor palbociclib (PD0332991) in Rbþ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment. Clin Cancer Res 2015;21:995–1001.
Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012;490:61–70.
Paye A, Truong A, Yip C, Cimino J, Blacher S, Munaut C, et al. EGFR Activation and signaling in cancer cells are enhanced by the membrane-bound metalloprotease MT4-MMP. Cancer Res 2014;74:6758–70.
Chabottaux V, Sounni NE, Pennington CJ, English WR, van den Brule F, Blacher S, et al. Membrane-type 4 matrix metalloproteinase promotes breast cancer growth and metastases. Cancer Res 2006;66:5165–72.
Host L, Paye A, Detry B, Blacher S, Munaut C, Foidart JM, et al. The proteolytic activity of MT4-MMP is required for its pro-angiogenic and pro-metastatic promoting effects. Int J Cancer 2012;131:1537–48.
Yip C, Foidart P, Somja J, Truong A, Lienard M, Feyereisen E, et al. MT4-MMP and EGFR expression levels are key biomarkers for breast cancer patient response to chemotherapy and erlotinib. Br J Cancer 2017; 116:742–51.
Noel A, De Pauw-Gillet MC, Purnell G, Nusgens B, Lapiere CM, Foidart JM. Enhancement of tumorigenicity of human breast adenocarcinoma cells in nude mice by matrigel and fibroblasts. Br J Cancer 1993;68:909–15.
Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res 2007;13:3989–98.
Hatem R, El Botty R, Chateau-Joubert S, Servely JL, Labiod D, de Plater L, et al. Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget 2016;7: 48206–19.
Hatem R, Labiod D, Chateau-Joubert S, de Plater L, El Botty R, Vacher S, et al. Vandetanib as a potential new treatment for estrogen receptor-negative breast cancers. Int J Cancer 2016;138:2510–21.
Marangoni E, Laurent C, Coussy F, El-Botty R, Chateau-Joubert S, Servely JL, et al. Capecitabine efficacy is correlated with TYMP and RB1 expression in PDX established from triple-negative breast cancers. Clin Cancer Res 2018;24:2605–15.
Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 2007;13:2329–34.
Reeder-Hayes KE, Carey LA, Sikov WM. Clinical trials in triple negative breast cancer. Breast Dis 2010;32:123–36.
Kruser TJ, Wheeler DL. Mechanisms of resistance to HER family targeting antibodies. Exp Cell Res 2010;316:1083–100.
Witkiewicz AK, Chung S, Brough R, Vail P, Franco J, Lord CJ, et al. Targeting the vulnerability of RB tumor suppressor loss in triple-negative breast cancer. Cell Rep 2018;22:1185–99.
Witkiewicz AK, Knudsen ES. Retinoblastoma tumor suppressor pathway in breast cancer: prognosis, precision medicine, and therapeutic interventions. Breast Cancer Res 2014;16:207.
Wang Y, Zhang T, Kwiatkowski N, Abraham BJ, Lee TI, Xie S, et al. CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell 2015;163:174–86.
Rao SS, Stoehr J, Dokic D, Wan L, Decker JT, Konopka K, et al. Synergistic effect of eribulin and CDK inhibition for the treatment of triple negative breast cancer. Oncotarget 2017;8:83925–39.
Niederst MJ, Sequist LV, Poirier JT, Mermel CH, Lockerman EL, Garcia AR, et al. RB loss in resistant EGFR mutant lung adenocarcinomas that transform to small-cell lung cancer. Nat Commun 2015;6:6377.
Zhou J, Wu Z, Wong G, Pectasides E, Nagaraja A, Stachler M, et al. CDK4/6 or MAPK blockade enhances efficacy of EGFR inhibition in oesophageal squamous cell carcinoma. Nat Commun 2017;8:13897.
Beck TN, Georgopoulos R, Shagisultanova EI, Sarcu D, Handorf EA, Dubyk C, et al. EGFR and RB1 as dual biomarkers in HPV-negative head and neck cancer. Mol Cancer Ther 2016;15:2486–97.
Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 2016;13:674–90.
Liu CY, Lau KY, Hsu CC, Chen JL, Lee CH, Huang TT, et al. Combination of palbociclib with enzalutamide shows in vitro activity in RB proficient and androgen receptor positive triple negative breast cancer cells. PLoS One 2017;12:e0189007.
Asghar US, Barr AR, Cutts R, Beaney M, Babina I, Sampath D, et al. Single-cell dynamics determines response to CDK4/6 inhibition in triple-negative breast cancer. Clin Cancer Res 2017;23:5561–72.
Marangoni E, Poupon MF. Patient-derived tumour xenografts as models for breast cancer drug development. Curr Opin Oncol 2014;26:556–61.
Adamo B, Ricciardi GRR, Ieni A, Franchina T, Fazzari C, Sano MV, et al. The prognostic significance of combined androgen receptor, E-Cadherin, Ki67 and CK5/6 expression in patients with triple negative breast cancer. Oncotarget 2017;8:76974–86.