Reference : Electrochemical Mechanism and Effect of Carbon Nanotubes on the Electrochemical Perfo...
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Chemistry
Electrochemical Mechanism and Effect of Carbon Nanotubes on the Electrochemical Performance of Fe1.19(PO4)(OH)0.57(H2O)0.43 Cathode Material for Li-Ion Batteries
[fr] Mechanisme électrochimique et effet des nanotubes de carbones dur les performance électrochimique du matériau de cathode Fe1.19(PO4)(OH)0.57(H20)0.43 pour les batteries Li-ion
Mahmoud, Abdelfattah mailto [Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT >]
Karegeya, Claude [Université du Rwanda > Faculté des sciences > > >]
Moulay Tahar, Sougrati [Université Montpellier 2 > Institut Charles Gerhardt > > >]
Bodart, Jérôme mailto [Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT >]
Vertruyen, Bénédicte mailto [Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale >]
Cloots, Rudi mailto [Université de Liège - ULiège > Département de chimie (sciences) > Vice-Recteur à la vie étud. et aux infrastr. immobilières >]
Lippens, Pierre-Emmanuel [Université Montpellier 2 > Institut Charles Gerhardt > > >]
Boschini, Frédéric mailto [Université de Liège - ULiège > > Plateforme APTIS >]
ACS Applied Materials and Interfaces
American Chemical Society
Yes (verified by ORBi)
[en] Cathode ; Fe1.19(PO4)(OH)0.57(H2O)0.43/CNT composite ; Hydrothermal synthesis ; Insertion reaction mechanisms ; Operando Mössbauer spectroscopy ; Operando XRD
[en] A hydrothermal synthesis route was used to synthesize iron(III) phosphate hydroxide hydrate–carbon nanotube composites. Carbon nanotubes (CNT) were mixed in solution with Fe1.19(PO4)(OH)0.57(H2O)0.43 (FPHH) precursors for one-pot hydrothermal reaction leading to the FPHH/CNT composite. This produces a highly electronic conductive material to be used as a cathode material for Li-ion battery. The galvanostatic cycling analysis shows that the material delivers a specific capacity of 160 mAh g–1 at 0.2 C (0.2 Li per fu in 1 h), slightly decreasing with increasing current density. A high charge–discharge cyclability is observed, showing that a capacity of 120 mAh g–1 at 1 C is maintained after 500 cycles. This may be attributed to the microspherical morphology of the particles and electronic percolation due to CNT but also to the unusual insertion mechanism resulting from the peculiar structure of FPHH formed by chains of partially occupied FeO6 octahedra connected by PO4 tetrahedra. The mechanism of the first discharge–charge cycle was investigated by combining operando X-ray diffraction and 57Fe Mössbauer spectroscopy. FPHH undergoes a monophasic reaction with up to 10% volume changes based on the Fe3+/Fe2+ redox process. However, the variations of the FPHH lattice parameters and the 57Fe quadrupole splitting distributions during the Li insertion–deinsertion process show a two-step behavior. We propose that such mechanism could be due to the existence of different types of vacant sites in FPHH, including vacant “octahedral” sites (Fe vacancies) that improve diffusion of Li by connecting the one-dimensional channels.
GreenMat ; Institut Charles Gerhardt
Fonds de la Recherche Scientifique (Communauté française de Belgique) - F.R.S.-FNRS ; Walloon Region under the “PE PlanMarshall2.vert” program (BATWAL 1318146) ; Walloon region for a Beware Fellowship Academia 2015-1, RESIBAT no. 1510399
Researchers ; Professionals ; Students
ACS Appl. Mater. Interfaces 2018, 10, 40, 34202-34211

File(s) associated to this reference

Fulltext file(s):

Restricted access
acsami.8b10663.pdfPublisher postprint5.77 MBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.