Keywords :
Begomovirus/genetics/physiology; Genome, Viral; Geography; Host Specificity/genetics; Recombination, Genetic/genetics; Viral Proteins/metabolism; Tomato leaf curl New Delhi virus; begomovirus replication; begomovirus resistance; geminivirus diversity; hypersensitive response; pseudorecombination
Abstract :
[en] Tomato leaf curl New Delhi virus (ToLCNDV) is an exceptional Old World bipartite begomovirus. On the Indian subcontinent, a region in which monopartite DNA satellite-associated begomoviruses with mostly narrow geographical ranges predominate, it is widespread, with a geographical range also including the Far East, Middle East, North Africa and Europe. The success of ToLCNDV probably derives from its broad host range and highly flexible genomic configuration: its DNA-A component is capable of productively interacting with, and trans-replicating, diverse DNA-B components and betasatellites. An understanding of the capacity of ToLCNDV to infect a variety of hosts and spread across a broad and ecologically variable geographical range could illuminate the potential economic threats associated with similar begomoviral invasions. Towards this end, we used available ToLCNDV sequences to reconstruct the history of ToLCNDV spread. TAXONOMY: Family Geminiviridae, Genus Begomovirus. ToLCNDV is a bipartite begomovirus. Following the revised begomovirus taxonomic criteria of 91% and 94% nucleotide identity for species and strain demarcation, respectively, ToLCNDV is a distinct species with two strains: ToLCNDV and ToLCNDV-Spain. HOST RANGE: The primary cultivated host of ToLCNDV is tomato (Solanum lycopersicum), but the virus is also known to infect 43 other plant species from a range of families, including Cucurbitaceae, Euphorbiaceae, Solanaceae, Malvaceae and Fabaceae. DISEASE SYMPTOMS: Typical symptoms of ToLCNDV infection in its various hosts include leaf curling, vein thickening, puckering, purpling/darkening of leaf margins, leaf area reduction, internode shortening and severe stunting.
Scopus citations®
without self-citations
104