Article (Scientific journals)
Leaf realization problem, caterpillar graphs and prefix normal words
Blondin Massé, Alexandre; De Carufel, Julien; Goupil, Alain et al.
2018In Theoretical Computer Science, 732, p. 1-13
Peer Reviewed verified by ORBi
 

Files


Full Text
Leaf_realization_preprint.pdf
Author preprint (546.58 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Graph theory; Combinatorics on words; Induced subtrees; Leaf; Prefix normal word; Prefix normal form
Abstract :
[en] Given a simple graph G with n vertices and a natural number i<n+1, let be L(i) the maximum number of leaves that can be realized by an induced subtree T of G with i vertices. We introduce a problem that we call the leaf realization problem, which consists in deciding whether, for a given sequence of n+1 natural numbers (l_0,l_1,...,l_n), there exists a simple graph G with n vertices such that L(i)=l_i for i=0,...,n . We present basic observations on the structure of these sequences for general graphs and trees. In the particular case where G is a caterpillar graph, we exhibit a bijection between the set of the discrete derivatives and the set of prefix normal words.
Disciplines :
Mathematics
Author, co-author :
Blondin Massé, Alexandre;  Université du Québec à Montréal
De Carufel, Julien;  Université du Québec à Trois Rivières
Goupil, Alain;  Université du Québec à Trois Rivières
Lapointe, Mélodie;  Université du Québec à Montréal
Nadeau, Émile;  Université du Québec à Montréal
Vandomme, Elise ;  Université de Liège - ULiège > Département de mathématique > Probabilités et statistique mathématique
Language :
English
Title :
Leaf realization problem, caterpillar graphs and prefix normal words
Publication date :
2018
Journal title :
Theoretical Computer Science
ISSN :
0304-3975
Publisher :
Elsevier, Netherlands
Volume :
732
Pages :
1-13
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 17 January 2019

Statistics


Number of views
54 (5 by ULiège)
Number of downloads
134 (0 by ULiège)

Scopus citations®
 
7
Scopus citations®
without self-citations
6
OpenCitations
 
6
OpenAlex citations
 
12

Bibliography


Similar publications



Contact ORBi