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Abstract

Given a simple graph G with n vertices and a natural number i ≤ n, let LG(i)
be the maximum number of leaves that can be realized by an induced subtree
T of G with i vertices. We introduce a problem that we call the leaf realization
problem, which consists in deciding whether, for a given sequence of n+1 natural
numbers (`0, `1, . . . , `n), there exists a simple graph G with n vertices such that
`i = LG(i) for i = 0, 1, . . . , n. We present basic observations on the structure
of these sequences for general graphs and trees. In the particular case where
G is a caterpillar graph, we exhibit a bijection between the set of the discrete
derivatives of the form (∆LG(i))1≤i≤n−3 and the set of prefix normal words.

Keywords: graph theory, combinatorics on words, induced subtrees, leaf,
prefix normal words, prefix normal form

1. Introduction

Recently, a family of binary words, called prefix normal words, was intro-
duced by Fici and Lipták [1] and then further investigated by Burcsi et al. [2, 3].
The defining property of these binary words is that their prefixes contain at least
as many 1’s as any of their factors of the same length. Moreover, for any bi-
nary word w, there is a prefix normal word w′ of the same length such that
for any length k, the maximal number of 1’s in a factor of length k coincide
for w and w′. Such w′ is called the prefix normal form of w. The motivation
behind the study of prefix normal words and prefix normal forms comes from
a variation of the binary jumbled pattern matching (binary JPM), which asks
whether, for a text of length n over a binary alphabet and two numbers x and
y, there exists a substring with x 1’s and y 0’s [4]. While this problem has a
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simple efficient solution, its indexing variation, called indexing jumbled pattern
matching (IJPM) is not trivial. The binary IJPM problem asks whether one
can preprocess a given text of length n so that one can answer quickly (x, y)
queries. Up to now, the best known construction of the index of size O(n) takes
a time O(n2/ log n) [5, 6]. It is proven that prefix normal forms of the text can
be used to construct this index [1]. Hence, the extensive study of prefix normal
words and forms can yield improvements on the binary IJPM problem.

It turns out that prefix normal words appear in another completely different
context from graph theory, when studying subtrees of caterpillar trees. More
precisely, let LG(i) be the maximum number of leaves that can be realized by
an induced subtree of G with exactly i vertices. We are interested in studying
the properties of the finite sequence LG(i)i=0,1,...,n, called the leaf sequence of
G, where n is the number of vertices of G.

Problem 1.1 (Leaf Realization Problem). Given a sequence of n + 1 natural
numbers (`0, `1, . . . , `n), does there exists a graph G with n vertices such that

(LG(0), LG(1), . . . , LG(n)) = (`1, `2, . . . , `n)?

Problem 1.1 presents many similarities with other famous realization prob-
lems investigated more than 50 years ago. For instance, considerable attention
was devoted to the graph realization problem [7], which consists in deciding
whether a finite sequence of natural numbers (d1, . . . , dn) is the degree sequence
of some labeled simple graph. In the case where the answer is positive, the
sequence (d1, . . . , dn) is called a graphic sequence. The problem was proven to
be solvable in polynomial time [7, 8, 9]. In particular, it amounts to verify n
inequalities and whether the sum of degrees is even [7]. Several variations of the
graph realization problem have been investigated, such as the bipartite realiza-
tion problem [10, 11] and the digraph realization problem [12, 13, 14, 15, 16].

Although we do not succeed, in this paper, in presenting a complete answer
to Problem 1.1, we solve the following subproblem, which casts some light on
the structure of leaf sequences and suggests that solving the general Problem 1.1
is hard:

Problem 1.2 (Leaf Realization Problem for Caterpillar Trees). Given a se-
quence of n + 1 natural numbers (`0, `1, . . . , `n), does there exist a caterpillar
tree C of n vertices such that

(LC(0), LC(1), . . . , LC(n)) = (`1, `2, . . . , `n)?

It is worth mentioning that, contrary to the approaches used in [7, 8, 9,
10, 11, 12, 13, 14, 15, 16], our solution relies on nontrivial concepts studied in
combinatorics on words. Indeed, if we consider the sequences of differences of
consecutive elements of leaf sequences, also called the discrete derivative of the
leaf sequences, then we prove that, for caterpillar graphs, the set

∆LC = {∆LC : C is a caterpillar}
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of discrete derivative of leaf sequences of caterpillar graphs is precisely the set
of prefix normal words. To prove this result, we introduce the notion of reading
caterpillars of a word. The link between binary words and their prefix normal
forms is then mirrored in terms of their reading caterpillars. Two words with the
same prefix normal form are such that their reading caterpillars have the same
leaf functions. This is yet another example of the fruitful interaction between
graph theory and combinatorics on words (see for example [17, 18]).

It is worth mentioning that our motivation in the study of induced subtrees
having the maximum number of leaves comes from [19, 20], where remarkable
structures on regular lattices are presented. Other similar problems have also
been studied, such as maximum leaf spanning subtrees [21, 22], frequent subtrees
mining [23] and induced subtrees [24].

The manuscript is organized as follows. Preliminaries are recalled in Sec-
tion 2. We introduce the notions of leaf functions, leaf sequences and their
discrete derivatives in Section 3. We develop some tools in Section 4 that are
useful for the proof of our main theorems. Section 5 and 6 are devoted to our
main theorems about the relationship between caterpillar graphs, prefix normal
words and prefix normal forms. We conclude with some perspectives on future
work in Section 7. Finally, Appendix A contains proofs omitted in the main
part for the sake of readability.

2. Preliminaries

We start by recalling basic terminology on words. The reader is referred to
Lothaire for a complete introduction [25]. Let Σ be a finite set called an alphabet
whose elements are called letters. A word w = w1w2 · · ·wn of length n on the
the alphabet Σ is a finite concatenation of n letters wi ∈ Σ. A language over Σ
is any set of words on Σ, either finite or infinite. We denote by Σ∗ the language
of all finite words over Σ and by Σn the language of all finite words of length n.

A word u is a factor of w when w = pus is the concatenation of the words
p, u and s for some words p, s. In that case, we say that u occurs in w. If p
(respectively s) is the empty word, then u is called a prefix (resp. suffix ) of w.
We denote by prefi(w) (resp. suffi(w)) the unique prefix (resp. suffix) of w of
length i, and by Fact(w) (respectively Pref(w), Suff(w)) the set of all its factors
(resp. prefixes, suffixes). We denote by Facti(w) the set Fact(w) ∩ Σi.

The alphabet Alph(w) of a word w is the set of letters occurring in w. The
number of occurrences of the letter a in w is denoted by |w|a. Two words u
and v are called abelian equivalent if |u|a = |v|a for all letters a ∈ Σ. Finally,
the reversal of a word w, denoted by w̃, is the word obtained by reading w
from right to left. If w = w1 · · ·wn with wi ∈ Σ, then w̃ = wn · · ·w1. Given a
sequence a = (a1, a2, ..., an), we use the notation a[i] for the element ai.

We also recall some definitions and notation about graph theory and we refer
the reader to [26] for an introduction to this subject. All graphs considered in
this text are simple and undirected. Let G = (V,E) be a graph with vertex set
V and edge set E. The degree of a vertex u is the number of vertices that are
adjacent to u and is denoted by deg(u).
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We denote by |G| or |V | the total number of vertices of G which is called
the size of G. For U ⊆ V , the subgraph of G induced by U , denoted by G[U ], is
the graph G[U ] = (U,E ∩P2(U)), where P2(U) is the set of all subsets of size 2
of U . An induced subtree of G is a connected and acyclic induced subgraph of
G, that is, a tree.

Let T = (V,E) be a tree. We say that a vertex u of T with deg(u) = 1 is a
leaf of T and we denote by |T |l the number of leaves of T . Let Vl be the set
of leaves of T . A tree T is called a caterpillar if the induced subgraph T [V \Vl]
is a chain graph, i.e. if all leaves of T are adjacent to a single central chain of
T . We call this central chain T [V \ Vl] the spine of the caterpillar T . The set
of all caterpillars is denoted by C.

3. Fully leafed induced subtrees

We first recall the definition of leaf function from [20].

Definition 3.1 (Leaf function, [20]). Given a finite graph G = (V,E), let TG(i)
be the family of all induced subtrees of G with exactly i vertices. The leaf
function of G, denoted by LG, is the function with domain {0, 1, 2, . . . , |G|}
defined by

LG(i) = max{|T |l : T ∈ TG(i)}.
As is customary, we set max ∅ = −∞. An induced subtree T of G with i vertices
is called fully leafed when |T |l = LG(i).

Example 3.1. Consider the graph G depicted in Figure 1. Its leaf function is

i 0 1 2 3 4 5 6 7 8
LG(i) 0 0 2 2 3 4 4 5 −∞

and the subtree induced by {1, 2, 3, 4, 6, 8} is fully leafed because it has 6 vertices
and 4 leaves and LG(6) = 4 leaves.

7 8

32

5

1

6

4

Figure 1: A graph with vertex set V = {1, . . . , 8}

Remark 3.1. For any simple graph G with at least one vertex, we have LG(0) =
0 since the empty tree has no leaf, and LG(1) = 0 because a single vertex is not
a leaf. Finally, LG(2) = 2 in any graph G with at least one edge. See [20] for
more properties of the function LG.

Proposition 3.1 ([20]). Let G be a simple graph with n ≥ 3 vertices.
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• If G is connected and non-isomorphic to Kn, the complete graph on n
vertices, then LG(3) = 2.

• The sequence (LG(i))i=0,1,...,n is non-decreasing if and only if G is a tree.

In what follows, we are interested in the internal structure of the words
associated with the leaf functions.

Definition 3.2 (Leaf sequence). Let ` be a finite sequence in the set N ∪
{−∞}. We say that ` is a leaf sequence if there exists a simple graph G such
that the sequence of values of its leaf function LG is equal to `, i.e. if ` =
(LG(i))i=0,1,2,...,|G|.

A useful concept in the investigation of leaf sequences is the associated word
of its first differences, also called the discrete derivative.

Definition 3.3 (Leaf word). Let G be a simple graph with n vertices and LG

its associated leaf function. The leaf word of G, denoted by ∆LG, is the word
on the alphabet Z ∪ {ω} with i-th letter given by

∆LG(i) = LG(i+ 3)− LG(i+ 2),

for i = 1, 2, . . . , n−3. We set LG(i+3)−LG(i+2) = ω whenever LG(i+2) = −∞
or LG(i+ 3) = −∞.

Remark 3.2. Recall that LG(0) = 0, LG(1) = 0, LG(2) = 2 for any graph with
at least one edge and that LG(3) = 2 for any connected graph non isomorphic
to a complete graph. Therefore, for most connected graphs, the sequence of
differences (LG(i)−LG(i− 1))i=1,...,n of consecutive values of LG always starts
with the prefix 020. To avoid repeating this information, we have chosen to
erase the first three letters in the sequence of first differences and shift indices
by 3 units from left to right in the above definition of leaf word.

Example 3.2. Consider the graph G represented in Figure 2. The prefix 020 in
the sequence of differences is omitted and the leaf word of G is ∆LG = 110101.

i 0 1 2 3 4 5 6 7 8 9
LG(i) 0 0 2 2 3 4 4 5 5 6

LG(i+ 1)− LG(i) 0 2 0 1 1 0 1 0 1

∆LG

Figure 2: A graph G, its leaf function LG, its sequence of differences and its leaf word ∆LG.
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A first step to answer Problem 1.1 consists in describing the admissible
alphabets of leaf words.

Lemma 3.1. The set S = {1, 0,−1,−2, . . . , ω} is the smallest set such that for
any graph G with at least 3 vertices we have Alph(∆LG) ⊆ S.

Proof. Let LG be the leaf function of a simple graph G with at least 3 vertices
and let i ≥ 3. Obviously, 1, 0 and ω are possible values of LG(i+ 1)−LG(i) as
shown in the leaf function of Example 3.1. Additionally, the difference LG(i +
1) − LG(i) may take any negative integer value. Indeed, consider the wheel
graph Wn with n+ 1 vertices. Its leaf function is

LWn
(i) =



0, if i = 0, 1;

2, if i = 2;

i− 1, if 3 ≤ i ≤ bn2 c+ 1;

2, if bn2 c+ 2 ≤ i ≤ n− 1;

−∞, if n ≤ i ≤ n+ 1;

as shown in [20]. Therefore ∆LW2k+4
contains the letter −k for any k ≥ 1. The

particular case of W10 is depicted in Figure 3 where we observe that
LW10(7)− LW10(6) = −3.

It remains to show that for any graph G, the positive integers k > 1 cannot
occur in ∆LG. Arguing by contradiction, assume that G is a graph with n
vertices such that ∆LG contains some letter k ∈ N \ {0, 1}. By Definition 3.3,
we have LG(i + 1) − LG(i) = k > 1 for some 3 ≤ i < n. This means that
there exists an induced subtree T of G with i+ 1 vertices and LG(i) + k leaves.
Let T ′ be a subgraph obtained by removing one leaf from T . Then T ′ is an
induced subtree with i vertices and has at least LG(i) + k − 1 > LG(i) leaves,
contradicting the definition of LG(i).

(a) (b)

Figure 3: The wheel graph W10 with two fully leafed induced subtrees of respective size (a) 6
and (b) 7 in blue.

An elementary yet useful observation is that the alphabet of the leaf word
indicates whether the associated graph is a tree. The following lemma is an
immediate consequence of Lemma 3.1 and Proposition 3.1.
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Lemma 3.2. Let G be a graph with at least 3 vertices. Then Alph(∆LG) ⊆
{0, 1} if and only if G is a tree.

Now it follows directly from Definition 3.3 and Lemma 3.2 that, for a tree
T ,

LT (j)− LT (i) = |suffj−i(prefj−3(∆LT ))|1 (1)

for 3 ≤ i ≤ j ≤ n.
For instance in the graph G of Example 3.2 showed in Figure 2, we ver-

ify Equation (1) with i = 4 and j = 7 as LG(7) − LG(4) = 2 = |101|1 =
|suff3(pref4(∆LG))|1.

At this stage, we are not able to provide a complete answer to Problem 1.2
for general graphs. However, restricting our attention to caterpillar graphs leads
to an interesting connection with the so-called prefix normal words. To show
this connection, we need to introduce the notion of caterpillar sequences.

4. Caterpillar sequences

For practical purposes, it is convenient to represent caterpillar graphs by
sequences of natural numbers.

Definition 4.1. A caterpillar sequence S = (s1, . . . , sk) of length k is a se-
quence of k non negative integers such that s1, sk ≥ 1 and, if k = 1, then
s1 ≥ 2.

The size |S| of S and its number of leaves |S|l are respectively defined by

|S| = k +

k∑
i=1

si and |S|l =

k∑
i=1

si.

The reversal of S is the caterpillar sequence S̃ = (sk, . . . , s1), that we also

denote by S ˜ with the exponent notation for typographic reasons. We denote
by S the set of all caterpillar sequences.

We choose the expression “caterpillar sequence” to explain the fact that
to each caterpillar sequence S = (s1, . . . , sk) corresponds, up to isomorphism,
a unique caterpillar graph C with spine (v1, . . . , vk) such that the number of
leaves adjacent to vi is si for all i ∈ {1, . . . , k}. Therefore,

|S| = |C| and |S|l = |C|l.

Conversely, to each caterpillar graph C corresponds one caterpillar sequence S
obtained by arbitrarily choosing one among the two orientations of its spine,
say (v1, · · · , vk), and by setting s1 = deg(v1)− 1, sk = deg(vk)− 1 and

si = deg(vi)− 2, for all i ∈ {2, . . . , k − 1},

if k > 1, and simply s1 = deg(v1) if k = 1.

7



Next, we define the function Deg on caterpillar sequences as the function
that produces the sequence of degrees of the corresponding caterpillars :

Deg(s1, . . . , sk) =

{
(sk) if k = 1,

(s1 + 1, s2 + 2, . . . , sk−1 + 2, sk + 1) if k > 1.

Observe that in the definition of Deg, we avoid double parentheses and write
Deg(s1, . . . , sk) instead of Deg((s1, . . . , sk)).

Definition 4.2. Given two caterpillar sequences S = (s1, . . . , sk) and S′ =
(s′1, . . . , s

′
k′) of respective lengths k and k′ with 1 ≤ k′ ≤ k, we say that S′ is

a caterpillar subsequence of S, and we write S′ � S, if there exists an integer
i ∈ {0, . . . , k − k′} such that

Deg(S′)[j] ≤ Deg(S)[j + i], for all j ∈ {1, . . . , k′}.
Finally, given any caterpillar sequence S, we denote by LS the leaf function

of its associated caterpillar graph, so that Definition 3.1 translates as

LS(i) = max{|S′|l : S′ � S, |S′| = i}. (2)

The next observation, whose proof can be found in Appendix A, follows
directly from Definition 4.2.

Proposition 4.1. The relation � is a partial order on the set S of all caterpillar
sequences.

One may notice that the caterpillar sequences (1, 1) and (3) are both covered
by (1, 2) and (2, 1) with respect to the order � (see Figure 4) so that the poset
(S,�) is not a lattice.

In fact, caterpillar subsequences are precisely caterpillar sequences of induced
subcaterpillars.

Definition 4.3. A caterpillar subsequence S′ of S is called fully leafed if its
corresponding tree is a fully leafed induced subtree of the tree associated to S.

Leftmost and rightmost caterpillar subsequences are of particular interest.
Let S = (s1, . . . , sk) be a caterpillar sequence. Given i ∈ {3, 4, . . . , |S|}, the left
caterpillar subsequence of size i of S is defined recursively by

Lefti(S) =


S, if i = |S|;
Lefti(s1, . . . , sk−1, sk − 1), if i < |S| and sk ≥ 2;

Lefti(s1, . . . , sk−1 + 1), if i < |S| and sk = 1.

(3)

The right caterpillar subsequence of size i of S is defined similarly by

Righti(S) =


S, if i = |S|;
Righti(s1 − 1, s2, . . . , sk), if i < |S| and s1 ≥ 2;

Righti(s2 + 1, . . . , sk), if i < |S| and s1 = 1.

(4)

The following observations are immediate. See Appendix A for the proofs.
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(2, 2)

(1, 2)

(2)

(1, 0, 0, 1)

(4)

(1, 3) (1, 1, 1) (2, 0, 1)(3, 1) (1, 0, 2)

(1, 0, 1)(2, 1)

(5)

(3) (1, 1)

Figure 4: Hasse diagram of caterpillar sequences of size up to 6 of (S,�)

Lemma 4.1. Let S be a caterpillar sequence and 3 ≤ i ≤ |S|. Then

(i) Lefti(S) � S;

(ii) Righti(S) � S;

(iii) Lefti(S̃) = ˜Righti(S).

Lefti(S) and Righti(S) are unique sequences (see Appendix A for the proof).

Lemma 4.2. Let S = (s1, . . . , sk) be a caterpillar sequence of length k, and
3 ≤ i ≤ |S|. Then there exist unique integers a and α such that Lefti(S) =
(s1, . . . , sa, α), satisfying the relations

0 ≤ a ≤ k − 1, 1 ≤ α ≤ sa+1 + 1 and i =

a∑
m=1

(sm + 1) + (α+ 1). (5)

In the same way, there exist unique integers b and β such that Righti(S) =
(β, sb, . . . , sk), where

2 ≤ b ≤ k + 1, 1 ≤ β ≤ sb−1 + 1 and i =

k∑
m=b

(sm + 1) + (β + 1). (6)

Remark 4.1. In Lemma 4.2, when a = 0, we abuse the notation and define
(s1, . . . , sa, α) = (α). Similarly, if b = 0, then (β, sb, . . . , sk) = (β).

Example 4.1. Consider the caterpillar graph C, depicted in Figure 5, with
size |C| = 16 and number of leaves |C|l = 10. Its caterpillar sequence is
S = (3, 0, 2, 4, 0, 1) with |C| = |S|. The sequence (1, 1, 4, 0, 1) is a caterpillar
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subsequence of S with associated subcaterpillar shown in Figure 5 (b). It is not
a right caterpillar subsequence because one leaf adjacent to the third leftmost
inner vertex is missing. The sequence (6) is a caterpillar subsequence of S and
has a unique associated subcaterpillar of C shown in Figure 5 (a). The left and
right caterpillar subsequences of S of size 6 are respectively

Left6(S) = (3, 1) and Right6(S) = (2, 0, 1)

and their associated graphs are shown in Figures 5 (c) and (d).

(a) (6) (b) (1, 1, 4, 0, 1)

(c) (3, 1) (d) (2, 0, 1)

Figure 5: The graph associated to the caterpillar sequence (3, 0, 2, 4, 0, 1) and some induced
subtrees, highlighted in blue. (a) The associated subtree of the caterpillar subsequence (6).
(b) The associated subtree of the caterpillar subsequence (1, 1, 4, 0, 1). (c) The associated
subtree of the left caterpillar subsequence of size 6. (d) The associated subtree of the right
caterpillar subsequence of size 6.

We now introduce a useful operation called the graft of caterpillar sequences.

Definition 4.4. Let S = (s1, s2, . . . , sk) and S′ = (s′1, s
′
2, . . . , s

′
l) be two cater-

pillar sequences. The graft of S and S′, denoted by S � S′, is the caterpillar
sequence

S � S′ = (s1, s2, . . . , sk−1, sk + s′1 − 2, s′2, . . . , s
′
k′).

As an example, we have (4, 1) � (3, 0, 1) = (4, 2, 0, 1). Figure 6 shows how
the graft of sequences is interpreted on the corresponding caterpillars.

It is straightforward to prove that (S, �) is a non-commutative monoid with
identity (2). Moreover this monoid is isomorphic to (Σ∗, ·), the monoid of words
with concatenation. Also, S, S′ � S � S′, for any caterpillar sequences S and
S′.

The maps | · | and | · |l on caterpillar sequences are compatible with the
graft operation in the following sense. Given two caterpillar sequences S and
S′, we have

|S � S′|l = |S|l + |S′|l − 2, (7)

|S � S′| = |S|+ |S′| − 3. (8)
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� =(4, 1) (3, 0, 1) (4, 2, 0, 1)

Figure 6: The graft of the caterpillar sequences (4, 1) and (3, 0, 1) and the corresponding
caterpillar graphs. The blue (respectively red) edges on left hand side are merged on the right
hand side.

Also, a straightforward computation shows that for any caterpillar sequences
S and S′:

S̃ � S′ = S̃′ � S̃. (9)

The graft operation is useful for the decomposition of a caterpillar sequence
as a “product” of smaller sequences.

Lemma 4.3. Let S be a caterpillar sequence. Then, for any integer i ∈
{3, 4, . . . , |S|},

S = Lefti(S) � Right|S|+3−i(S).

Proof. Let n = |S| and write S = (s1, . . . , sk). From Lemma 4.2, we have

Lefti(S) = (s1, . . . , sa, α) and Rightn+3−i(S) = (β, sb, . . . , sk),

where 0 ≤ a ≤ k − 1, 1 ≤ α ≤ sa+1 + 1, 2 ≤ b ≤ k + 1, 1 ≤ β ≤ sb−1 + 1 and

i =

a∑
m=1

(sm + 1) + (α+ 1) and n+ 3− i =

k∑
m=b

(sm + 1) + (β + 1).

Summing up those two last equations yields

n+ 3 =

a∑
m=1

sm +

k∑
m=b

sm + (a+ (k − b+ 1)) + (α+ β) + 2. (10)

We claim that a + 1 = b − 1. Arguing by contradiction, assume first that
a+ 1 > b− 1. Then Equation (10) implies

n+ 3 ≥
(

k∑
m=1

sm + k

)
+ (a− b+ 1) + (α+ β + 2) > n+ α+ β + 1,

so that α+ β < 2, which is impossible. Next, assume that a+ 1 < b− 1. Using
again Equation (10), we obtain

n+ 3 ≤
(

k∑
m=1

sm + k

)
− (sa+1 + sb−1) + (a− b+ 1) + (α+ β + 2)

< n− sa+1 − sb−1 + α+ β + 1.
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Thus α+ β > sa+1 + sb−1 + 2, which is also impossible.
Therefore,

n+ 3 = n− sa+1 + α+ β + 1,

which implies sa+1 = α+ β − 2. Hence

Lefti(S) � Rightn+3−i(S) = (s1, . . . , sa, α) � (β, sb, . . . , sk)

= (s1, . . . , sa, α+ β − 2, sb, . . . , sk)

= (s1, . . . , sa, sa+1, sa+2, . . . , sk)

= S,

concluding the proof.

Remark 4.2. The graft of Lefti(S) and Rightn+3−i(S) provides a factorization
of any caterpillar into two smaller caterpillars of arbitrary size i and n+ 3− i,
for any 3 ≤ i ≤ n, but it does not seem possible to extend this factorization to
the larger class of trees. For example, we do not see how one could “factor” the
tree illustrated in Figure 7 as the graft of one tree of size 5 and one tree of size
11.

Figure 7: A tree with leaf word non prefix normal.

Caterpillars can be built naturally by reading binary words from left to right.

Definition 4.5. We define the reading caterpillar sequence RC(w) of a binary
word w recursively on |w| as follows. The reading caterpillar sequence RC(ε)
of the empty word is the sequence (2) corresponding to a simple chain on three
vertices. Let ua be a binary word with u ∈ {0, 1}∗, a ∈ {0, 1} and let RC(u) =
(r1, . . . , rk) be the reading caterpillar sequence of u. Then the reading caterpillar
sequence of ua is

RC(ua) =

{
RC(u) � (1, 1), if a = 0;

RC(u) � (3), if a = 1.
(11)

Note that Equation (11) is equivalent to

RC(ua) =

{
(r1, . . . , rk − 1, 1), if a = 0;

(r1, . . . , rk + 1), if a = 1.
(12)

The following observations are immediate consequences of Definition 4.5 (see
Appendix A for the proof).
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Lemma 4.4. Let u, v and w be binary words on {0, 1}. Then

(i) RC(uv) = RC(u) � RC(v);

(ii) RC(w̃) = R̃C(w).

Lemma 4.4 (i) shows that RC : Σ∗ → S is a monoid morphism. We can
easily verify that it is in fact an isomorphism.

Lemma 4.5. Let w be a binary word on {0, 1}, a ∈ {0, 1} and 3 ≤ i ≤ |w|+ 3.
Then

(i) Lefti(RC(w)) = RC(prefi−3(w));

(ii) Righti(RC(w)) = RC(suffi−3(w));

(iii) |RC(w)| = |w|+ 3;

(iv) |RC(wa)|l = |RC(w)|l + a;

(v) |RC(w)|l = |w|1 + 2;

(vi) |Lefti(RC(w))|l = |prefi−3(w)|1 + 2;

(vii) |Righti(RC(w))|l = |suffi−3(w)|1 + 2.

The proof of Lemma 4.5 is found in Appendix A.

5. Caterpillars and prefix normal words

We are now in a position to answer Problem 1.2 and to explicitly describe
the connection between caterpillars and prefix normal words.

Definition 5.1 ([1]). A binary word u on the alphabet {0, 1} is called prefix
normal if for any prefix p ∈ Pref(u) and any factor f ∈ Fact(u), the condition
|p| = |f | implies |p|1 ≥ |f |1. We denote by PNW the set of prefix normal words.

In what follows, we see that the restriction RC|PNW of constructing the
reading caterpillar sequence of a prefix normal word is the right inverse of the
operation

∆L : S → PNW
S 7→ ∆LS

of constructing the leaf word of a caterpillar sequence. In other words, we show
in the next pages that

∆L ◦ RC|PNW = IPNW .

However, notice that RC ◦∆L is different from the identity IS .
More precisely, we prove the following theorem.
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Theorem 5.1. Let L : {0, 1, 2, . . . , n} → N be a function such that L(0) = 0,
L(1) = 0, L(2) = 2 and L(3) = 2. Then there exists a caterpillar C such that
L = LC if and only if ∆L is a prefix normal word.

The proof of Theorem 5.1 is divided into Propositions 5.1 and 5.2.

Proposition 5.1. Let w be a prefix normal word and 3 ≤ i ≤ |w|+ 3. Then

(i) LRC(w)(i) = |Lefti(RC(w))|l;

(ii) ∆LRC(w) = w.

Proof. (i) It is immediate that LRC(w)(i) ≥ |Lefti(RC(w))|l, since Lefti(RC(w))
is a caterpillar subsequence of size i of RC(w). Thus we only need to prove that

LRC(w)(i) ≤ |Lefti(RC(w))|l.

We proceed by induction on |w|.
Basis. If |w| = 0, then w = ε and i = 3 so that

LRC(w)(i) = LRC(ε)(3) = 2

= |Left3(RC(ε))|l = |Lefti(RC(w))|l
≤ |Lefti(RC(w))|l.

Induction. Since |w| > 0, there exist a word u and a letter a such
that w = ua. Assume first that i = |w| + 3. Then Equation (2) implies
LRC(w)(i) = |Lefti(RC(w))|l since Lefti(RC(w)) = RC(w) is the only caterpil-
lar subsequence of size |w|+ 3 of RC(w).

It remains to consider the case i < |w| + 3. Arguing by contradiction,
assume that there exists a caterpillar subsequence S of RC(w) of size i such
that |S|l > |Lefti(RC(w))|l. If S � RC(u), then

|S|l > |Lefti(RC(w))|l (13)

= |Lefti(RC(u))|l (since i < |w|+ 3) (14)

= LRC(u)(i) (by induction hypothesis) (15)

contradicting the maximality of LRC(u)(i). Hence, S 6� RC(u).
Next, assume that S = Righti(RC(w)). Then we have

|prefi−3(w)|1 + 2 = |Lefti(RC(w))|l
< |S|l = |Righti(RC(w))|l = |suffi−3(w)|1 + 2,

i.e. |prefi−3(w)|1 < |suffi−3(w)|1, contradicting the assumption that w is prefix
normal.

To conclude, assume that S is neither a caterpillar subsequence of RC(u)
nor a right caterpillar subsequence of RC(w). Let RC(w) = (r1, r2, . . . , rk)
and S = (s1, s2, . . . , sk′). Since S � RC(w) but S 6� RC(u), we have k′ ≤ k
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and sj ≤ rj+k−k′ for j = 1, 2, . . . , k′. Let j be the largest index such that
sj < rj+k−k′ (such an index j exists since S 6= Righti(RC(w))) and let

S′ = (s1, s2, . . . , sj−1, sj + 1, sj+1, . . . , sk′ − 1).

Clearly, S′ � RC(u), but |S′|l = |S|l so that a sequence of relations similar
to relations (13)–(15) obtained by replacing S by S′ leads to a contradiction,
concluding the proof.
(ii) For 1 ≤ i ≤ |w|, we have

∆LRC(w)(i)

= LRC(w)(i+ 3)− LRC(w)(i+ 2) (by Definition 3.3)

= |Lefti+3(RC(w))|l − |Lefti+2(RC(w))|l (by Proposition 5.1 (i))

= (|prefi(w)|1 + 2)− (|prefi−1(w)|1 + 2) (by Lemma 4.5 (vi))

= wi,

as claimed.

The following simple observation about non prefix normal words is the key
to proving the second part of Theorem 5.1.

Lemma 5.1. Let w be a binary word on {0, 1} that is non prefix normal. Then
there exist two abelian equivalent words u and u′, such that u0 ∈ Pref(w) and
1u′ ∈ Fact(w).

Proof. Let w be a non prefix normal word. then there exists at least one prefix
p and one factor f of w of the same length such that |p|1 < |f |1. Without loss
of generality, assume that |p| and |f | are as small as possible. Let p = ua and
f = bu′ for some letters a, b ∈ {0, 1}. Since |p| and |f | are minimal, we have
|u|1 ≥ |u′|1. Therefore,

|u|1 + a = |ua|1 = |p|1 < |f |1 = |bu′|1 = |u′|1 + b ≤ |u|1 + b,

which can only be verified when a = 0 and b = 1, in which case |u|1 = |u′|1.

We are now ready to describe the structure of the leaf sequences of caterpil-
lars.

Proposition 5.2. Let C be a caterpillar. Then ∆LC is prefix normal.

Proof. We proceed by contradiction and assume that ∆LC is not prefix normal.
By Lemma 5.1, there exist two words p and f , with |p|1 = |f |1 such that
p0 ∈ Pref(∆LC) and 1f ∈ Fact(∆LC). Let i − 3 be the index of the last
letter of any occurrence of the factor 1f in ∆LC , i.e. the integer i satisfies
1f = suff |1f |(prefi−3(∆LC)). Let S be a caterpillar subsequence of a caterpillar
sequence of C such that |S|l = LC(i) and |S| = i. Also, let A = Lefti−|1f |(S)
and B = Right|1f |+3(S) so that, by Lemma 4.3, we have S = A �B.
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Then

|B|l = |S|l − |A|l + 2 (by Equation (7))

= LC(i)− |A|l + 2 (by hypothesis)

≥ LC(i)− LC(i− |1f |) + 2 (by definition of L)

= |suff |1f |(prefi−3(∆LC))|1 + 2 (by Equation (1))

= |1f |1 + 2 (by hypothesis)

= |f |1 + 3

= |p|1 + 3

> |p|1 + 2

= |p0|1 + 2

= LC(|p0|+ 3) (by Equation (1) with i = 3)

which is absurd since |B| = |p0|+ 3 and B � S.

6. Caterpillars and prefix normal forms

In [2], Burcsi et al. introduced an equivalence relation on binary words as
follows. Let w and w′ be two binary words on {0, 1}. We write w ≡ w′, if
F1(w, i) = F1(w′, i) for all i ∈ N, where F1 : {0, 1}∗ × N → N is the function
that associates to a binary word u and an integer i the maximal number of 1’s
occurring in any factor of length i of u:

F1(u, i) = max{|v|1 : v ∈ Facti(u)}.

It was shown by the same authors that there exists a unique prefix normal word
in each equivalence class [2, Theorem 2].

We now consider an equivalence relation on graphs whose restriction to cater-
pillar graphs is essentially the same as ≡ on binary words. Given two graphs
G and G′, we say that G and G′ are leaf-equivalent if LG = LG′ . As dis-
cussed throughout this paper, caterpillar graphs and caterpillar sequences are
essentially the same objects. Hence, we are allowed to restrict our attention on
caterpillar sequences, keeping in mind that their properties have a twin counter-
part in the set of caterpillar graphs. Therefore, given two caterpillar sequences
S and S′, we say that S and S′ are leaf-equivalent if LS = LS′ .

Theorem 6.1. Consider two binary words w and w′. We have

LRC(w) = LRC(w′) if and only if F1(w, i) = F1(w′, i) for all i ∈ N.

The proof of Theorem 6.1 is based on the following lemmas and corollary.

Lemma 6.1. Let w be a binary word and u a factor of w. Then RC(u) is a
subsequence of RC(w) with size |u|+ 3 and |u|1 + 2 leaves.
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Proof. Let w ∈ {0, 1}∗ and u ∈ Fact(w). Then there exist x, y ∈ {0, 1}∗ such
that w = xuy. By Lemma 4.4, we have RC(w) = RC(x) � RC(u) � RC(y). So
RC(u) is a subsequence of RC(w). To conclude the proof note that |RC(u)| =
|u|+ 3 by Lemma 4.5 (iii) and |RC(u)|l = |u|1 + 2 by Lemma 4.5 (v).

Lemma 6.2. Let w be a binary word. For each integer i ∈ {3, . . . , |w| + 3},
there exist integers j and j′ such that

Lefti(Rightj(RC(w))) and Righti(Leftj′(RC(w))),

are fully leafed caterpillar subsequences.

Proof. Let n be the length of RC(w) and write RC(w) = (r1, · · · , rn). Consider
a fully leafed caterpillar subsequence S = (s1, . . . , sk) of RC(w) of size i such
that

S 6= Lefti(Rightj(RC(w))) for all j ≥ i.
As S is a subsequence of RC(w), it occurs with a shift `, i.e.

Deg(S)[m] ≤ Deg(RC(w))[`+m].

Let d =
∑k−1

m=2 r`+m − sm. We show by contradiction that s1 + sk − 2 ≥ d.
Indeed, assume that s1 + sk − 2 < d. Let T be the subtree corresponding to S.
The idea is to first consider the sequence (s2 + 1, . . . , sk−1, 1) that corresponds
to T where we removed s1 + sk − 1 ≤ d vertices. Then we can add s1 +
sk − 1 ≤ d leaves to the previous tree. More formally, we choose an integer
z ∈ {2, . . . , k − 1} maximal such that s1 + sk − 1 ≥ ∑z

m=2 r`+m − sm. Set
ξ = s1 + sk − 1−∑z

m=2 r`+m − sm, so that the sequence

S′ = (r`+2 + 1, r`+3, . . . , r`+z, sz+1 + ξ, sz+2, . . . , sk−1, 1)

is a caterpillar subsequence of RC(w) and satisfies |S′| = |S| and |S′|l =
|S|l + 1. This contradicts the fact that S is a fully leafed subsequence.

Hence, we have s1 + sk − 2 ≥ d. Therefore, S′ = (s′1, r`+2, . . . , r`+k−1, s
′
k)

with s′1 = s1−min(s1− 1, d), s′k = s1 + sk − d− s′1 is a fully leafed subsequence
(as the number of leaves did not change). Moreover, this sequence is of the form
Lefti(Rightj(RC(w))) with

j = n−
∑̀
m=1

(rm + 1)− r`+1 + s′1.

Figure 8 illustrates the transformation S 7→ S′. The red caterpillar subsequence
(3, 0, 2) is mapped to the blue one (3, 1, 1) = Left8(Right12(RC(00110101100))).

The case for Righti(Leftj′(RC(w))) is symmetric.

Observe that a fully leafed caterpillar subsequence of RC(w) is not always
of the form Lefti(Rightj(RC(w))). For example, let w = 00110101100 and
consider the graph of RC(w) depicted in Figure 8. We have LRC(w)(8) = 5
and the subtree highlighted in red is fully leafed but cannot be obtained as
Left8(Rightj(RC(w))) for any j ≥ 8.
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Figure 8: Two fully leafed subtrees of RC(00110101100).

Corollary 6.1. Let w be a binary word. For each given size i ≥ 3, there exists
a factor u of w of length i− 3 such that RC(u) is fully leafed subsequence.

Proof. Let n = |w| and write w = w1 · · ·wn with wk ∈ {0, 1}. Recall that
RC(w) has size n + 3. Let i ∈ {4, . . . , n + 3}. By Lemma 6.2, there exists
an index j ≥ i such that Lefti(Rightj(RC(w))) is a fully leafed subsequence of
RC(w) with size i. Finally, let u = wn−j+4 · · ·wn−j+i. Then by Lemma 4.5 (i)
and (ii), we have

Lefti(Rightj(RC(w))) = Lefti(RC(suffj−3(w))) = RC(u)

and |u| = i− 3 as required.

We now have the necessary tools to prove Theorem 6.1.

Proof of Theorem 6.1. Assume first that F1(w, i) > F1(w′, i) for some i ∈ N.
So there exists u a factor of w of length i such that |u|1 > |u′|1 for any factor u′

of w′ of length i. Then by Lemma 6.1, RC(u) is a subsequence of RC(w) with
strictly more leaves than any subsequence of RC(w′) that is equal to a RC(u′)
for some factor u′ of w′ of length i. We conclude that LRC(w)(i) > LRC(w′)(i)
by Corollary 6.1.

Assume now that LRC(w) 6= LRC(w′). Let n = |w| and w = w1w2 · · ·wn with
wj ∈ {0, 1}. Then, without loss of generality, there exists an integer i such that
LRC(w)(i) > LRC(w′)(i). Let Sw be a fully leafed subsequence of RC(w) such
that |Sw| = i and |Sw|l = LRC(w)(i). By Lemma 6.2, we can suppose that Sw

is such that there exists an integer k such that

RC(w) = Leftk(RC(w)) � Sw � Rightn+9−k−i(RC(w)).

Then, by Equation (7) and Lemma 4.5,

LRC(w)(i) = |Sw|l
= |RC(w)|l − |Leftk(RC(w))|l − |Rightn+9−k−i(RC(w))|l + 4

= |w|1 + 2− |prefk−3(w)|1 − 2− |suffn+6−k−i(w)|1 − 2 + 4

= |wk−2wk−1 · · ·wk+i−6|1 + 2.
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So there is a factor u = wk−2wk−1 · · ·wk+i−6 of length i− 3 of w that contains
LRC(w)(i)− 2 times the letter 1. Therefore

|u|1 = LRC(w)(i)− 2

> LRC(w′)(i)− 2 (by hypothesis)

≥ |u′|1 (by Lemma 6.1)

for any u′ factor of w′ such that |u′| = i− 3. Hence F1(w, i− 3) > F1(w′, i− 3)
and w 6≡ w′.

7. Perspectives

Given a family A of graphs, let L(A) be the language of all possible leaf
words ∆LG for G ∈ A. Let G be the family of all graphs, T the family of all
trees and C the family of all caterpillars. Lemma 3.2 implies L(T )∩L(G\T ) = ∅.

As caterpillars are trees, one might wonder whether the language of leaf
words of caterpillars and the language of leaf words of trees are identical. This
is not the case: Figure 7 shows a tree T which is the smallest counter-example.
Indeed the leaf word w = 1101011011 of T is not prefix normal because

|pref5(w)|1 = |11010|1 = 3 < 4 = |11011|1 = |suff5(w)|1.

Hence, L(C) ( L(T ). The relation between the different classes of graphs
considered in the paper is summarized in Figure 9.

L(G)

L(T )

L(C)

L(G \ T )

Figure 9: The relations between the languages L(G), L(T ), L(G \ T ) and L(C).

In order to investigate the language L(T ) of trees, we have first extended
the notion of prefix normal word to a notion of k-prefix normal word different
from the one described in [1] as follows. We say that a word w is k-prefix
normal if for all p ∈ Pref(w) and for all f ∈ Fact|p|(w) such that |p| = |f |,
we have |f |1 − |p|1 ≤ k. One might wonder if there exists a constant k such
that L(T ) ⊆ k-PNW, where k-PNW is the set of all k-prefix normal words.
Unfortunately, this is not the case, since there exists a family Fk of trees whose
leaf words are k-prefix normal for every positive integers k but not (k−1)-prefix
normal. Such a family Fk is constructed as follows: Start with a single vertex,
three simple chains of length k − 1 and three star graphs with k + 3 vertices
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as shown in Figure 10. Then add three edges connecting the isolated vertex to
each simple chain and add three more edges connecting the other end of the
simple chains to each star graph. The leaf word associated with this graph is
1k+10k10k1k+10k1k+1 and it is k-prefix normal but not (k − 1)-prefix normal.
The graphs F1, F2 and F3 are illustrated in Figure 10. It is easy to see that
the leaf word of F2 is 1302102130213 which is 2-prefix normal but not 1-prefix
normal.

F1 F2 F3

Figure 10: The trees F1, F2 and F3.
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Appendix A. Proofs

We now give the details of the proofs omitted in Section 4.

Proof of Proposition 4.1. Reflexivity. Immediate.
Antisymmetry. Let S = (s1, s2, . . . , skS

) and T = (t1, t2, . . . , tkT
) be two

caterpillar sequences such that S � T and T � S. Then we have kS = kT so
that the shift is i = 0. Since S � T , we have Deg(S)[j] ≤ Deg(T )[j] for all
j ∈ {1, 2, . . . , kS}. Similarly, since T � S, Deg(S)[j] ≥ Deg(T )[j]. This implies
that S = T .

Transitivity. Consider three caterpillar sequences, S = (s1, s2, . . . , skS
), T =

(t1, t2, . . . , tkT
) and U = (u1, u2, . . . , ukU

), such that S � T and T � U . By
definition, there exist two shifts i ∈ {0, 1, . . . , kT−kS} and ` ∈ {0, 1, . . . , kU−kT }
such that

Deg(S)[j] ≤ Deg(T )[j + i], for j = 1, 2, ..., kS ;

Deg(T )[j] ≤ Deg(U)[j + `], for j = 1, 2, ..., kT .

Let j ∈ {1, 2, . . . , kS}. Then 1 ≤ j + i ≤ kS + (kT − kS) = kT , which implies

Deg(S)[j] ≤ Deg(T )[j + i] ≤ Deg(U)[j + i+ `].

Since 0 ≤ i+ ` ≤ kU − kS , we conclude that S � U .

Proof of Lemma 4.1. (i) We proceed by induction on n = |S|.
Basis. If n = 3, then S = (2) and i = 3. Thus Lefti(S) = (2) = S � S.
Induction. Assume that Lefti(S

′) � S′ for any caterpillar sequence S′ of
size n′ < n and let S = (s1, . . . , sk) be of size n. If i = n, then Lefti(S) = S � S.
Suppose i ∈ {3, . . . , n− 1}.

On one hand, if sk ≥ 2, then

Lefti(S) = Lefti(s1, . . . , sk−1, sk − 1) (by Equation (3))

� (s1, . . . , sk−1, sk − 1) (by induction hypothesis)

� (s1, . . . , sk−1, sk) (by Definition 4.2)

= S.

On the other hand, if sk = 1, then

Lefti(S) = Lefti(s1, . . . , sk−1 + 1) (by Equation (3))

� (s1, . . . , sk−1 + 1) (by induction hypothesis)

� (s1, . . . , sk−1, sk) (by Definition 4.2)

= S,

since Deg(s1, . . . , sk−1 + 1)[k − 1] ≤ (sk−1 + 1) + 1 = Deg(S)[k − 1].
(ii) Symmetric to (i).
(iii) Follows from the symmetry of Equations (3) and (4).
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Proof of Lemma 4.2. We only prove the statement about Lefti(S), since the
proof for Righti(S) is symmetric. The proof is done by induction on n = |S|,
with i fixed.

Basis. If n = i, then Lefti(S) = Left|S|(S) = S, which implies a = k − 1
and α = sk so that Relations (5) are true.

Induction. Assume that the result holds for n − 1. Since n > i, by
Equation 3, there exists a caterpillar sequence S′ = (s′1, . . . , s

′
k′) of size n − 1,

such that Lefti(S) = Lefti(S
′), where

S′ =

{
(s1, . . . , sk−1, sk − 1), if sk ≥ 2;

(s1, . . . , sk−1 + 1), if sk = 1.

Therefore, by the induction hypothesis, there exist unique integers a and α such
that Lefti(S

′) = (s′1, . . . , s
′
a, α) with

0 ≤ a ≤ k′ − 1, 1 ≤ α ≤ s′a+1 + 1 and i =

a∑
m=1

(s′m + 1) + (α+ 1).

We claim that

Lefti(S) = Lefti(S
′) = (s′1, . . . , s

′
a, α) = (s1, . . . , sa, α)

To prove this claim, note that if sk ≥ 2, then (s′1, . . . , s
′
k′) = (s1, . . . , sk−1, sk−1)

and k′ = k. Since a ≤ k′ − 1 = k − 1, we have s′m = sm for m = 1, 2, . . . , a.
Similarly, if sk = 1, then (s′1, . . . , s

′
k′) = (s1, . . . , sk−1 + 1) and k′ = k− 1. Since

a ≤ k′ − 1 = k − 2, we also have s′m = sm for m = 1, 2, . . . , a,
It remains to show that the integers a and α satisfy Relations (5). On one

hand, if sk ≥ 2, we have

0 ≤ a ≤ k′ − 1 = k − 1,

1 ≤ α ≤ s′a+1 + 1 ≤ sa+1 + 1

and, by the induction hypothesis,

i =

a∑
m=1

(s′m + 1) + (α+ 1) =

a∑
m=1

(sm + 1) + (α+ 1).

On the other hand, if sk = 1, we obtain

0 ≤ a ≤ k′ − 1 = k − 2 ≤ k − 1,

1 ≤ α ≤ s′a+1 + 1 ≤ sa+1 + 1

and, by the induction hypothesis,

i =

a∑
m=1

(s′m + 1) + (α+ 1) =

a∑
m=1

(sm + 1) + (α+ 1).
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Proof of Lemma 4.4. (i) Let u and v be binary words. We proceed by induction
on the length of v.

Basis. For v = ε, we obtain RC(uv) = RC(u) = RC(u)�(2) = RC(u)�RC(ε)
since (2) is the identity of the graft.

Induction. Let n ≥ 1. Assume that RC(u) � RC(v) = RC(uv) for any
binary word v such that |v| < n. Consider |v| = n and write v = v′a where
v′ ∈ {0, 1}∗ and a ∈ {0, 1}. We set

S =

{
(1, 1), if a = 0;

(3), if a = 1.

We have

RC(uv) = RC(uv′a) = RC(uv′) � S (by Definition 4.5)

= (RC(u) � RC(v′)) � S (by induction hypothesis)

= RC(u) � (RC(v′) � S) (by associativity of �)
= RC(u) � RC(v′a) (by definition of �)
= RC(u) � RC(v).

(ii) We proceed by induction on the length of the binary word w.

Basis. For w = ε, we clearly have RC(ε̃) = (2) = R̃C(ε).

Induction. Assume that RC(ṽ) = R̃C(v) for any binary word v of length
|v| < |w|. Let w = ua where u ∈ {0, 1}∗ and a ∈ {0, 1}. Then

RC(w̃) = RC(ũa) = RC(aũ)

= RC(a) � RC(ũ) (by the previous point)

= R̃C(a) � R̃C(u) (by induction hypothesis)

= ˜RC(u) � RC(a) (by Lemma 4.4)

= R̃C(ua) = R̃C(w) (by definition of w)

as required.

Proof of Lemma 4.5. Let RC(w) = (r1, . . . , rk).
(i) We proceed by induction on |w|.
Basis. If |w| = 0, then i = 3 and we have

Left3(RC(w)) = (2) = RC(ε) = RC(pref3−3(w)) = RC(prefi−3(w)).

Induction. Assume that w = ub for some word u and letter b. If 3 ≤ i <
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|w|+ 3, then 0 ≤ i− 3 < |w| = |u|+ 1 and i− 3 ≤ |u|. Therefore,

RC(prefi−3(w))

= RC(prefi−3(ub))

= RC(prefi−3(u)) (since i− 3 ≤ |u|)
= Lefti(RC(u)) (by induction hypothesis)

=

{
Lefti(r1, . . . , rk−1 + 1), if rk = 1;

Lefti(r1, . . . , rk−1, rk − 1), if rk ≥ 2;
(by Equation 12)

= Lefti(RC(w)) (by Equation 3)

as required.
Finally, if i = |w|+ 3, we have

Left|w|+3(RC(w)) = RC(w) = RC(pref |w|(w)) = RC(prefi−3(w))

concluding the proof.
(ii) It follows from (i), Lemmas 4.4 (ii) and 4.1 (iii) that

Righti(RC(w)) =
(

Lefti(R̃C(w))
) ˜

= (Lefti(RC(w̃))) ˜
=
(
RC(prefi−3(w̃))

) ˜
=
(

RC( ˜suffi−3(w))
) ˜

= RC(suffi−3(w)).

(iii) By induction on |w|.
Basis. If |w| = 0 then w = ε and

|RC(w)| = |(2)| = 3 = |w|+ 3

Induction. If w = ua for some word u and letter a. Let RC(u) =
(r1, ..., rk), then

|RC(ua)| =
{
|(r1, ..., rk − 1, 1)|, if a = 0

|(r1, ..., rk + 1)|, if a = 1

= |(r1, ..., rk)|+ 1

= |u|+ 3 + 1

= |w|+ 3

(iv) By Definition 4.5, on one hand, if a = 0, then

|RC(wa)|l =

k−1∑
j=1

ri

+ (rk − 1) + 1 = |RC(w)|l = |RC(w)|l + a.
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On the other hand, if a = 1, then

|RC(wa)|l =

k−1∑
j=1

ri

+ (rk + 1) = |RC(w)|l + 1 = |RC(w)|l + a.

(v) We proceed by induction on |w|.
Basis. If |w| = 0, then w = ε and

|RC(w)|l = |RC(ε)|l = |(2)|l = 2 = |ε|1 + 2 = |w|1 + 2.

Induction. Assume that w = ub for some word u and some letter b. Then

|RC(w)|l = |RC(ub)|l = |RC(u)|l + b = (|u|1 + 2) + b = |ub|1 + 2 = |w|1 + 2,

where the second equality follows from (iv) and the third equality holds by the
induction hypothesis.

(vi) We have

|Lefti(RC(w))|l = |RC(prefi−3(w))|l = |prefi−3(w)|1 + 2,

where the first equality follows from (i) and the second from (v).
(vii) Symmetric to (vi).
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