Abstract :
[en] In control rabbits, a renal ischemia of 60 min followed by 10 min of reperfusion resulted in an enhanced free radical production in cortical tissue, as assessed by a significant decrease of free glutathione (42%), protein-bound GSH (17%), and vitamin E (49%). In contrast, catalase or glutathione peroxidase activities were not affected by these experimental conditions. Free radical production in this model was also measured directly using electron spin resonance (ESR) spectroscopy associated with a PBN (alpha-phenyl N-tert-butyl-nitrone) spin trap agent in the venous blood arising from the ischemic kidney. The signal consisted of a triplet of doublets. In contrast, no signal could be detected in control blood samples taken prior to inducing ischemia. The burst of free radical production occurred in the early phase after restoration of flow in the kidneys rendered ischemic, as evidenced by a signal of weak intensity which generally appeared within the third minute after reperfusion and progressively increased to form a well-defined asymmetric signal following 10 min of reperfusion. The precise nature of free radicals trapped by the PBN agent remains, however, to be elucidated, but analysis of the coupling constants (aN = 14.5-15 G; a beta H = 2.5-3 G) and asymmetry of the central doublets suggests that the ESR signal may arise from a nitorxy-radical adduct resulting from the spin trapping by PBN of both oxygen- or carbon-centered radicals of lipid origin. As evidenced by both direct and indirect measurements, exchange of rabbit blood immediately after inducing renal ischemia with 30 ml/kg of Diaspirin Crosslinked Hemoglobin (7.5 g/dl in lactated electrolyte) or human serum albumin (7.5 g/dl in lactated electrolyte) did not exacerbate free radical production mediated by an ischemia reperfusion phenomenon, a typical situation found in a resuscitation setting.
Scopus citations®
without self-citations
13