Article (Scientific journals)
Introducing neuromodulation in deep neural networks to learn adaptive behaviours
Vecoven, Nicolas; Ernst, Damien; Wehenkel, Antoine et al.
2020In PLoS ONE
Peer Reviewed verified by ORBi
 

Files


Full Text
NeuromodulationInDeepNeuralNets.pdf
Publisher postprint (3.06 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
reinforcement learning; neural nets; neuromodulation; deep learning
Abstract :
[en] Animals excel at adapting their intentions, attention, and actions to the environment, making them remarkably efficient at interacting with a rich, unpredictable and ever-changing external world, a property that intelligent machines currently lack. Such an adaptation property relies heavily on cellular neuromodulation, the biological mechanism that dynamically controls intrinsic properties of neurons and their response to external stimuli in a context-dependent manner. In this paper, we take inspiration from cellular neuromodulation to construct a new deep neural network architecture that is specifically designed to learn adaptive behaviours. The network adaptation capabilities are tested on navigation benchmarks in a meta-reinforcement learning context and compared with state-of-the-art approaches. Results show that neuromodulation is capable of adapting an agent to different tasks and that neuromodulation-based approaches provide a promising way of improving adaptation of artificial systems.
Disciplines :
Computer science
Author, co-author :
Vecoven, Nicolas ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
Ernst, Damien  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Smart grids
Wehenkel, Antoine  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Big Data
Drion, Guillaume ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Introducing neuromodulation in deep neural networks to learn adaptive behaviours
Publication date :
27 January 2020
Journal title :
PLoS ONE
eISSN :
1932-6203
Publisher :
Public Library of Science, United States - California
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 09 January 2019

Statistics


Number of views
682 (77 by ULiège)
Number of downloads
299 (48 by ULiège)

Scopus citations®
 
22
Scopus citations®
without self-citations
21
OpenCitations
 
19
OpenAlex citations
 
28

Bibliography


Similar publications



Contact ORBi