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Abstract

Animals excel at adapting their intentions, attention, and actions to the environment, making

them remarkably efficient at interacting with a rich, unpredictable and ever-changing external

world, a property that intelligent machines currently lack. Such an adaptation property relies

heavily on cellular neuromodulation, the biological mechanism that dynamically controls intrin-

sic properties of neurons and their response to external stimuli in a context-dependent man-

ner. In this paper, we take inspiration from cellular neuromodulation to construct a new deep

neural network architecture that is specifically designed to learn adaptive behaviours. The

network adaptation capabilities are tested on navigation benchmarks in a meta-reinforcement

learning context and compared with state-of-the-art approaches. Results show that neuromo-

dulation is capable of adapting an agent to different tasks and that neuromodulation-based

approaches provide a promising way of improving adaptation of artificial systems.

1 Introduction

The field of machine learning has seen tremendous progress made during the past decade,

predominantly owing to the improvement of deep neural network (DNN) algorithms. DNNs

are networks of artificial neurons whose interconnections are tuned to reach a specific goal

through the use of an optimization algorithm, mimicking the role of synaptic plasticity in bio-

logical learning. This approach has led to the emergence of highly efficient algorithms that

are capable of learning and solving complex problems. Despite these tremendous successes, it

remains difficult to learn models that generalise or adapt themselves efficiently to new, unfore-

seen problems based on past experiences. This calls for the development of novel architectures

specifically designed to enhance adaptation capabilities of current DNNs.

In biological nervous systems, adaptation capabilities have long been linked to neuromodula-

tion, a biological mechanism that acts in concert with synaptic plasticity to tune neural network

functional properties. In particular, cellular neuromodulation provides the ability to continu-

ously tune neuron input/output behaviour to shape their response to external stimuli in different

contexts, generally in response to an external signal carried by biochemicals called neuromodula-

tors [1, 2]. Neuromodulation regulates many critical nervous system properties that cannot

be achieved solely through synaptic plasticity [3, 4]. It has been shown as being critical to the
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adaptive control of continuous behaviours, such as in motor control, among others [3, 4]. In this

paper, we introduce a new neural architecture specifically designed for DNNs and inspired from

cellular neuromodulation, which we call NMN, standing for “Neuro-Modulated Network”.

At its core, the NMN architecture comprises two neural networks: a main network and a

neuromodulatory network. The main network is a feed-forward DNN composed of neurons

equipped with a parametric activation function whose parameters are the targets of neuromo-

dulation. It allows the main network to be adapted to new unforeseen problems. The neuro-

modulatory network, on the other hand, dynamically controls the neuronal properties of the

main network via the parameters of its activation functions. Both networks have different

inputs: the neuromodulatory network processes feedback and contextual data whereas the

main network is in charge of processing other inputs.

Our proposed architecture can be related to previous works on different aspects. In [5], the

authors take inspiration from Hebbian plasticity to build networks with plastic weights, allow-

ing them to tune their weights dynamically. In [6] the same authors extend their work by

learning a neuromodulatory signal that dictates which and when connections should be plas-

tic. Our architecture is also related to hypernetworks [7], in which a network’s weights are

computed through another network. Finally, other recent works focused on learning fixed

activation functions [8, 9].

2 NMN architecture

The NMN architecture revolves around the neuromodulatory interaction between the neuro-

modulatory and main networks. We mimic biological cellular neuromodulation [10] in a

DNN by assigning the neuromodulatory network the task to tune the slope and bias of the

main network activation functions.

Let sðxÞ : R! R denote any activation function and its neuromodulatory capable

version σNMN(x, z; ws, wb) = σ(zT(xws + wb)) where z 2 Rk
is a neuromodulatory signal and

ws;wb 2 R
k

are two parameter vectors of the activation function, respectively governing a

scale factor and an offset. In this work, we propose to replace all the main network neuron

activation functions with their neuromodulatory capable counterparts. The neuromodulatory

signal z, where size k is a free parameter, is shared for all these neurons and computed by the

neuromodulatory network as z = f(c), where c is a vector representing contextual and feedback

inputs. The function f can be any DNN taking as input such vector c. For instance, c may have

a dynamic size (e.g. more information about the current task becomes available as time passes),

in which case f could be parameterised as a recurrent neural network (RNN) or a conditional

neural process [11], enabling refinement of the neuromodulatory signal as more data becomes

available. The complete NMN architecture and the change made to the activation functions

are depicted in Fig 1.

Notably, the number of newly introduced parameters scales linearly with the number of

neurons in the main network whereas it would scale linearly with the number of connections

between neurons if the neuromodulatory network was affecting connection weights, as seen

for instance in the context of hypernetworks [7]. Therefore our approach can be extended

more easily to very large networks.

3 Experiments

3.1 Setting

A good biologically motivated framework to which the NMN can be applied and evaluated is

meta-reinforcement learning (meta-RL), as defined in [12]. In contrast with classical
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reinforcement learning (RL), which is formalised as the interaction between an agent and an

environment defined as a Markov decision process (MDP), the meta-RL setting resides in the

sub-division of an MDP as a distribution D over simpler MDPs. Let t denote the discrete time,

xt the state of the MDP at time t, at the action taken at time t and rt the reward obtained at the

subsequent time-step. At the beginning of a new episode i, a new element is drawn from D to

define an MDP, referred to as M, with which the meta-RL agent interacts for T 2 N time-

steps afterwards. The only information that the agent collects on M is through observing the

states crossed and the rewards obtained at each time-step. We denote by ht = [x0, a0, r0, x1, . . .,

at−1, rt−1, xt] the history of the interaction with M up to time-step t. As in [12], the goal of the

meta-learning agent is to maximise the expected value of the discounted sum of rewards it can

obtain over all the time-steps and episodes.

3.2 Training

In [12], the authors tackle this meta-RL framework by using an advantage actor-critic (A2C)

algorithm. This algorithm revolves around two distinct parametric functions: the actor and the

critic. The actor represents the policy used to interact with the MDPs, while the critic is a func-

tion that rates the performance of the agent policy. All actor-critic algorithms follow an itera-

tive procedure that consists of the three following steps.

1. Use the policy to interact with the environment and gather data.

2. Update the actor parameters using the critic ratings.

3. Update the critic parameters to better approximate a value function.

In [12], the authors chose to model the actor and the critic with RNNs, taking ht as the

input. In this work, we propose comparing the NMN architecture to standard RNN by model-

ling both the actor and the critic with NMN. To this end, we define the feedback and contex-

tual inputs c (i.e. the neuromodulatory network inputs) as ht\xt while the main network input

is defined as xt. Note that ht grows as the agent interacts with M, motivating the usage of a

RNN as neuromodulatory network. A graphical comparison between both architectures is

shown on Fig 2.

To be as similar as possible to the neuronal model proposed by [10], the main network is a

fully-connected neural network built using saturated rectified linear unit (sReLU) activation

Fig 1. Sketch of the NMN architecture. A. The NMN is composed of the interaction of a neuromodulatory neural network that processes some context signal

(top) and a main neural network that shapes some input-output function (bottom). B. Computation graph of the NMN activation functions σNMN, where ws and

wb are parameters controlling the scale factor and the offset of the activation function σ, respectively. z is a context-dependent variable computed by the

neuromodulatory network.

https://doi.org/10.1371/journal.pone.0227922.g001
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functions σ(x) = min(1, max(−1, x)), except for the final layer (also neuromodulated), for

which σ(x) = x. In Section 4, we also report results obtained with sigmoidal activation func-

tions which are often appreciably inferior to those obtained with sReLUs, further encouraging

their use.

We built our models such that both standard RNN and NMN architectures have the same

number of recurrent layers/units and a relative difference between the numbers of parameters

that is lower than 2%. Both models are trained using an A2C algorithm with generalized

advantage estimation [13] and proximal policy updates [14]. Finally, no parameter is shared

between the actor and the critic. We motivate this choice by noting that the neuromodulatory

signal might need to be different for the actor and the critic. For completeness and reproduc-

ibility, we provide a formal description of the algorithms used as supplementary material. This

material aims mainly to describe and discuss standard RL algorithms in the context of meta-

RL and, to a lesser extent, it aims to provide full implementation details. We also provide the

exact neural architectures used for each benchmark as supplementary material.

3.3 Benchmarks description

We carried out our experiments on three custom benchmarks: a simple toy problem and two

navigation problems with sparse rewards. These benchmarks were built to evaluate our archi-

tecture in environments with continuous action spaces. For conciseness, we only provide a

mathematical definition of the first benchmark. The two other benchmarks are briefly textually

depicted and further details are available as supplementary material. Figs 3, 4 and 5 are a

graphical representation of each of the benchmarks.

Benchmark 1. We define the first benchmark (made of a 1-D state space and action

space) through a random variable α, informative enough to distinguish all different MDPs in

D. With this definition, α represents the current task and drawing α at the beginning of each

episode amounts to sampling a new task in D. At each time-step, the agent observes a biased

version xt = pt + α of the exact position of a target pt belonging to the interval [−5 − α, 5 − α],

with a � U½� 10; 10�. The agent outputs an action at 2 [−20, 20] and receives a reward rt

Fig 2. Sketch of a standard recurrent network (A) and of an NMN (B) in a meta-RL framework.! represent standard connections, ⊸ represent a

neuromodulatory connection,⇢ represent temporal connections and MLP stands for Multi-Layer Perceptron (standard feed-forward network).

https://doi.org/10.1371/journal.pone.0227922.g002
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which is equal to 10 if |at − pt|< 1 and −|at − pt| otherwise. In case of positive reward, pt+1 is

re-sampled uniformly in its domain, else pt+1 = pt. This benchmark is represented on Fig 3.

Benchmark 2. The second benchmark consists of navigating towards a target in a 2-D

space with noisy movements. Similarly to the first benchmark, we can distinguish all different

MDPs in D through a three-dimensional random vector of variables α. The target is placed at

(α[1], α[2]) in the 2-D space. At each time-step, the agent observes its relative position to the

target and outputs the direction of a move vector mt. A perturbation vector wt is then sampled

uniformly in a cone, whose main direction α½3� � U½� p;p½, together with the target’s posi-

tion, define the current task in D. Finally the agent is moved following mt + wt and receives a

reward (rt = −0.2). If the agent reaches the target, it instead receives a high reward (rt = 100)

and is moved to a position sampled uniformly in the 2-D space. This benchmark is represented

on Fig 4.

Fig 3. Sketch of a time-step interaction between an agent and two different tasks M (A and B) sampled in D for the first benchmark. Each task is defined by

the bias α on the target’s position pt observed by the agent. xt is the observation made by the agent at time-step t and at its action. For these examples, at falls outside

the target area (the zone delimited by the dashed lines), and thus the reward rt received by the agent is equal to −|at − pt| and pt+1 = pt. If the agent had taken an

action near the target, then it would have received a reward equal to 10 and the position of the target would have been re-sampled uniformly in [−5 − α, 5 − α].

https://doi.org/10.1371/journal.pone.0227922.g003

Fig 4. Sketch of a time-step interaction between an agent and two different tasks M (A and B) sampled in D for the second benchmark. Each task is defined

by the main direction α of a wind cone from which a perturbation vector wt is sampled at each time-step. This perturbation vector is then applied to the movement

mt of the agent, whose direction is given by the action at. If the agent reaches the target, it receives a reward of 100, otherwise a reward of −2.

https://doi.org/10.1371/journal.pone.0227922.g004
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Benchmark 3. The third benchmark also involves navigating in a 2-D space, but which

contains two targets. As for the two previous benchmarks, we distinguish all different MDPs

in D through a five-dimensional random vector of variables α. The targets are placed at posi-

tions (α[1], α[2]) and (α[3], α[4]). At each time-step, the agent observes its relative position to

the two targets and is moved along a direction given by its action. One target, defined by the

task in D through α[5], is attributed a positive reward (100) and the other a negative reward

(−50). In other words, α[5] is a Bernoulli variable that determines which target is attributed

the positive reward and which is attributed the negative one. As for benchmark 2, once the

agent reaches a target, it receives the corresponding reward and is moved to a position sampled

uniformly in the 2-D space. This benchmark is represented on Fig 5.

4 Results

Learning

From a learning perspective, a comparison of the sum of rewards obtained per episode by

NMNs and RNNs on the three benchmarks is shown in Fig 6. Results show that, on average,

NMNs learn faster (with respect to the number of episodes) and converge towards better poli-

cies than RNNs (i.e., higher rewards for the last episodes). It is worth mentioning that, NMNs

show very stable results, with small variances over different random seeds, as opposed to

RNNs. To put the performance of the NMN in perspective, we note that an optimal Bayesian

policy would achieve an expected sum of rewards of 4679 on benchmark 1 (see supplementary

material for proof) whereas NMNs reach, after 20000 episodes, an expected sum of rewards of

4534. For this simple benchmark, NMNs manage to learn near-optimal Bayesian policies.

Adaptation

From an adaptation perspective, Fig 7 shows the temporal evolution of the neuromodulatory

signal z (part A), of the scale factor (for each neuron of a hidden layer, part B) and of the

rewards (part C) obtained with respect to α for 1000 episodes played on benchmark 1. For

small values of t, the agent has little information on the current task, leading to a non-optimal

Fig 5. Sketch of a time-step interaction between an agent for the two different tasks M (A and B) sampled in D for the third benchmark. Each task is defined

by the attribution of a positive reward to one of the two targets (in blue) and a negative reward to the other (in red). At each time-step the agent outputs an action at
which drives the direction of its next move. If the agent reaches a target, it receives the corresponding reward.

https://doi.org/10.1371/journal.pone.0227922.g005
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behaviour (as it can be seen from the low rewards). Of greatest interest, the signal z for the

first time-steps exhibits little dependence on α, highlighting the agent uncertainty on the cur-

rent task and translating to noisy scale factors. Said otherwise, for small t, the agent learned

to play a (nearly) task-independent strategy. As time passes, the agent gathers further informa-

tion about the current task and approaches a near-optimal policy. This is reflected in the con-

vergence of z (and thus scale factors) with a clear dependency on α and also in wider-spread

values of z. For a large value of t, z holding constant between time-steps shows that the

Fig 6. Mean (± std in shaded) sum of rewards obtained over 15 training runs with different random seeds with respect to the episode number. Results of

benchmark 1,2 and 3 are displayed from left to right. The plots are smoothed thanks to a running mean over 1000 episodes.

https://doi.org/10.1371/journal.pone.0227922.g006

Fig 7. Adaptation capabilities of the NMN architecture on benchmark 1. A. Temporal evolution of the neuromodulatory signal z with respect to α, gathered on

1000 different episodes. Note that the neuromodulatory signals go from uniform distributions over all possible α values (i.e., the different contexts) to non-uniform

and adapted (w.r.t. α) distributions along with an increase in the rewards. B. The value of the scale factors with respect to α for each neuron of a hidden layer in the

main network. C. Rewards obtained at each time-step by the agent during those episodes. Note that light colours represent high rewards and correspond to

adapated neuromodulatory signals.

https://doi.org/10.1371/journal.pone.0227922.g007
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neuromodulatory signal is almost state-independent and serves only for adaptation. We note

that the value of z in each of its dimensions varies continuously with α, meaning that for two

similar tasks, the signal will converge towards similar values. Finally, it is interesting to look at

the neurons scale factor variation with respect to α (B). Indeed, for some neurons, one can see

that the scale factors vary between negative and positive values, effectively inverting the slope

of the activation function. Furthermore, it is interesting to see that some neurons are inactive

(scale factor almost equal to 0, leading to a constant activation function) for some values of α.

For benchmark 2, let us first note that z seems to code exclusively for α[3]. Indeed, z con-

verges slowly with time with respect to α[3], whatever the value of α[1] and α[2] (Fig 8). This,

could potentially be explained by the fact that one does not need the values of α[1] and α[2] to

compute an optimal move. The graphs on Fig 8 are projected on the dimension α[3], allowing

the same analysis as for benchmark 1.

The results obtained for benchmark 2 (Fig 8) show similar characteristics. Indeed, despite

the agent receiving only noisy information on α[3] at each time-step (as perturbation vectors

are sampled uniformly in a cone centered on α[3]), z quasi-converges slowly with time (part

A). The value of z in each of its dimensions also varies continuously with α[3] (as for the first

benchmark) resulting also in continuous scale factors variations. This is clearly highlighted at

time-step 100 on Fig 8 where the scale factors of some neurons appear highly asymmetric, but

with smooth variations with respect to α[3]. Finally, let us highlight that for this benchmark,

the agent continues to adapt even when it is already performing well. Indeed, one can see that

after 40 time-steps the agent is already achieving good results (part C), even though z has not

yet converged (part A), which is due to the stochasticity of the environment. Indeed, the agent

only receives noised information on α and thus after 40 time-steps it has gathered sufficient

Fig 8. Adaptation capabilities of the NMN architecture on benchmark 2. A. Temporal evolution of the neuromodulatory signal z with respect to α[3], gathered

on 1000 different episodes. As α[3] is an angle, the plot is projected in polar coordinates for a better interpretability of the results. Each dimension of z is

corresponds to a different radius. B. The value of the scale factors with respect to α[3] for each neuron of a hidden layer in the main network. Again, the plot is

projected in polar coordinates. For a given α[3], the values of the neurons’ scale factor are given thanks to the radius. c. Average reward obtained at each time-step

by the agent during those episodes. Note that after an average of 40 time-steps, the agent is already achieving decent performances even though z has not yet

converged.

https://doi.org/10.1371/journal.pone.0227922.g008
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information to act well on the environment, but insufficient information to deduce a near-

exact value of α[3]. This shows that the agent can perform well, even while it is still gathering

relevant information on the current task.

It is harder to interpret the neuromodulatory signal for benchmark 3. In fact, for that

benchmark, we show that the signal seems to code not only for the task in D but also for the

state of the agent in some sense. As α is five-dimensional, it would be very difficult to look at

its impact on z as a whole. Rather, we fix the position of the two references in the 2-D space

and look at the behaviour of z with respect to α[5]. In Fig 9 adaptation is clearly visible in the

rewards obtained by the agent (part C) with very few negative rewards after 30 time-steps. We

note that for later time-steps, z tends to partially converge (A) and:

• some dimensions of z are constant with respect to α[5], indicating that they might be coding

for features related to α[1, 2, 3, 4].

• Some other dimensions are well correlated to α[5], for which similar observations than for

the two other benchmarks can be made. For example, one can see that some neurons have a

very different scale factors for the two possible different values of α[5] (B).

• The remaining dimensions do not converge at all, implying that these are not related to α,

but rather to the state of the agent.

These results suggest that in this case, the neuromodulation network is used to code more

complex information than simply that required to differentiate tasks, making z harder to inter-

pret. Despite z not converging on some of its dimensions, we stress that freezing z after adapta-

tion will not strongly degrade the agent’s performance. That is, the features coded in z that do

Fig 9. Adaptation capabilities of the NMN architecture on benchmark 3. A. Temporal evolution of the neuromodulatory signal z with respect to α[5], gathered

on 1000 different episodes. Note that the neuromodulatory signals go from uniform distributions over all possible alpha values (i.e., the different contexts) to non-

uniform and adapted (w.r.t. alpha) distributions along with an increase of the rewards. B. The value of the scale factors with respect to α[5] for the 5 neurons of a

hidden layer in the main network, for which the scale factor is the most correlated to α[5]. C. Average number of good and bad target hits at each time-step during

those episodes. On average, after 15 time-steps, the agent starts navigating towards the correct target while avoiding the wrong one.

https://doi.org/10.1371/journal.pone.0227922.g009
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not depend on α are not critical to the performance of the agent. To illustrate this, we will ana-

lyse the behaviour of the agent within an episode when freezing and unfreezing the neuromo-

dulation signal and when changing task. This behaviour is shown on Fig 10, for which:

(a) Shows the behaviour of the agent when z is locked to its initial value. This plot thus

shows the initial “exploration” strategy used by the agent; that is, the strategy played by

the agent when it has not gathered any information on the current task.

(b) Shows the behaviour of the agent after unlocking z, that is when the agent is able to

adapt freely to the current task by updating z at each time-step.

(c) Shows the behaviour of the agent when locking z at a random time-step after adaptation.

z is thus fixed at a value which fits well the current task. As one can see, the agent contin-

ues to navigate towards the correct target. The performance is however a slightly

degraded as the agent seems to lose some capacity to avoid the wrong target. This further

suggests that, in this benchmark (as opposed to the two others), the neuromodulation sig-

nal does not only code for the current task but also for the current state, in some sense,

that is hard to interpret.

(d) Shows the same behaviour as in (c) as z is still locked to the same value, but the refer-

ences are now switched. As there is no adaptation without updating z; the agent is now

always moving towards to wrong target.

(e) Shows the behaviour of the agent when unlocking z once again. As one can see, the

agent is now able to adapt correctly by updating z at each time-step, and thus it navigates

towards the correct target once again.

Robustness study

Even though results are quite promising for the NMN, it is interesting to see how it holds up

with another type of activation function as well as analysing its robustness to different main

networks’ architectures.

Sigmoid activation functions

Fig 11 shows the comparison between having sigmoids as the main network’s activation func-

tion instead of sReLUs. As one can see, sigmoid activation functions lead to worse or equiva-

lent results to sReLUs, be it for RNNs or NMNs. In particular, the NMN architecture seems

more robust to the change of activation function as opposed to RNNs, as the difference

Fig 10. Analysis of the agent’s behaviour when freezing and unfreezing the neuromodulation signal and when changing task within an episode. The green

reference is attributed a reward of 100 while the red one is attributed a reward of −50. Each blue arrow represents the movement of the agent for a given time-step.

(a) Shows the behaviour with z fixed at its initial value. In (b) we unlock z. Then, in (c) we lock z with its current value. Finally in (d) we switch the references

before unlocking z once again in (e).

https://doi.org/10.1371/journal.pone.0227922.g010
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between sReLUS and sigmoids is often far inferior for NMNs than RNNs (especially for bench-

mark 2).

Architecture impact

Fig 12 shows the learning curve, on benchmark 1, for different main network architectures

(0, 1 and 4 hidden layers in the main network respectively). As one can see, RNNs can, in fact,

reach NMNs’ performances for a given architecture (no hidden layer in this case), but seem

relatively dependant on the architecture. On the contrary, NMNs seem surprisingly consistent

with respect to the number of hidden layers composing the main network.

5 Conclusions

In this work, we adopt a high-level view of a nervous system mechanism called cellular neuro-

modulation in order to improve the adaptive capabilities of artificial neural networks. The

Fig 11. Mean (± std in shaded) sum of rewards obtained over 15 training runs with different random seeds with respect to the episode number. Results of

benchmark 1, 2 and 3 are displayed from left to right. The plots are smoothed thanks to a running mean over 1000 episodes.

https://doi.org/10.1371/journal.pone.0227922.g011

Fig 12. Mean (± std in shaded) sum of rewards obtained on benchmark 1 over 15 training runs with different random seeds with respect to the episode

number. The plots are smoothed thanks to a running mean over 1000 episodes.

https://doi.org/10.1371/journal.pone.0227922.g012
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results obtained for three meta-RL benchmark problems showed that this new architecture

was able to perform better than classical RNN. The work reported in this paper could be

extended along several lines.

First, it would make sense to explore other types of machine-learning problems where

adaptation is required. Supervised meta-learning would be an interesting track to follow as, for

example, it is easy to see how our architecture could be applied to few-shot learning. In such a

framework, the context fed to the neuromodulatory network would be a set composed of a few

samples and their associated ground-truth. It would be of great interest to compare the perfor-

mance of our architecture to that of conditional neural processes [11] (CNP). Indeed, the

NMN used in this few-shot setting can, in fact, be seen as a CNP with a specifically designed

neuromodulatory connection for conditioning the main network.

Second, research work could also be carried out to further improve the NMN introduced

here. For instance, one could introduce new types of parametric activation functions which

are not linear, or even spiking neurons. This would amount to designing a brand-new

parametric activation functions, the parameters of which could thus be more powerful than

simple slope and bias. It would also be of interest to look at sharing activation function param-

eters per layer, especially in convolution layers, as this would essentially result in scaling the

filters. One could also build a neuromodulatory signal per-layer rather than for the whole net-

work, allowing for more complex forms of modulation. Furthermore, it would be interesting

to see if, with such a scheme, continuity in the neuromodulatory signal (with respect to the

task) would be preserved.

Third, it would be a logical progression to tackle other benchmarks to see if the observa-

tions made here hold true. More generally, analysing the neuromodulatory signal to a greater

depth (and its impact on activation functions) with respect to different more complex tasks

would be worthwhile. An interesting point raised in this work is that, for some tasks, neurons

have been shown to have a scaling factor of zero, making their activation constant with respect

to the input. Generally, any neuron that has a constant output can be pruned if the corre-

sponding offset is added to its connected neurons. This has two interesting implications. First,

some neurons have a scale factor of zero for all of the tasks and thus, by using this information,

one could prune the main network without losing performance. Second, neurons having a

zero-scale factor for some tasks essentially leads to only a sub-network being used for the given

task. It would be interesting to discover if very different sub-networks would emerge when an

NMN is trained on tasks with fewer similarities than those used in this work.

Finally, we should emphasize that even if the results obtained by our NMN are good and

also rather robust with respect to a large choice of parameters, further research is certainly still

needed to better characterise the NMN performances.
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Supporting information

1 Detailed description of benchmark 2 and 3

Before defining the three benchmark problems, let us remind that for each benchmark,
the MDPs that belong to the support of D, which generates the different tasks, have
transition probabilities and reward functions that differ only according to the value of a
scalar α. Drawing an MDP according to D will amount for all the benchmark problems
to draw a value of α according to a probability distribution Pα(·) and to determine the
transition function and the reward function that correspond to this value. Let us also
denote by X and A the state and action spaces respectively.

1.1 Benchmark 2

State space and action space:

X = [−3.0, 3.0]2

A = R

Probability distribution of α:

α[i] ∼ U[−1.0, 1.0], ∀i ∈ [1, 2]

α[3] ∼ U[−π, π[

where U[a, b] stands for a uniform distribution between a and b.

Initial state distribution:
The initial state x0 is drawn through 2 auxiliary random variables that represent the x
and y initial coordinates of the agent and are denoted ux0 , u

y
0. At the beginning of an

episode, those variables are drawn as follows:

uk0 ∼ U[−1.5 ∗ π, 1.5 ∗ π] ∀k ∈ {x, y}

From those four auxiliary variables, we define x0 as:

x0 = [α[1]− ax0 ,α[2]− a
y
0]

The distribution Px0
(·) is thus fully given by the distributions over the auxiliary variables.
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Transition function:
Fist, let target be the set of points (x, y) ∈ R2 such that

(x, y) ∈ target⇔
√

(x−α[1])2 + (y −α[2])2 ≤ 0.4 .

When taking action at in state xt drawing the state xt+1 from the transition function
amounts to first compute uxt+1 and uyt+1 according to the following procedure:

1. If (uxt , u
y
t ) ∈ target then ukt+1 ∼ U[−1.5, 1.5] ∀k ∈ {x, y} .

2. If the preceding condition is not met, an auxiliary variable nt ∼ U[−π4 , π4 ] is drawn
to compute uxt+1 and uyt+1 through the following sub-procedure:

(a) Step one:
uxt+1 = uxt + 0.25 ∗ (sin(at) + sin(α[3] + nt))

uyt+1 = uxt + 0.25 ∗ (cos(at) + cos(α[3] + nt)) .

One can see that taking an action at moves the agent in a direction which is
the vectoral sum of the intended move mt of direction at and of a perturbation
vector pt of direction α+ nt sampled through the distribution over nt.

(b) Step two: In the case where the coordinates computed by step one lay outside
S[−2; 2]2, they are corrected so as to model the fact that when the agent
reaches an edge of the 2D space, it is moved to the opposite edge from which
it continues its move. More specifically, ∀k ∈ {x, y}:

ukt+1 ←


ukt+1 − 4 if ukt+1 > 2

ukt+1 + 4 if ukt+1 < −2

ukt+1 otherwise .

Once uxt+1 and uyt+1 have been computed, xt+1 is set equal to [α[1]−uxt+1,α[2]−u
y
t+1].

Reward function:
The reward function can be expressed as follows:

ρ(at, xt, xt+1) =

{
100 if (uxt , u

y
t ) ∈ target

−2 otherwise .

1.2 Benchmark 3

State space and action space:

X = [−2.5, 2.5]4

A = R
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Probability distribution of α:

α[i] ∼ U[−1.0, 1.0], ∀i ∈ [1, 2, 3, 4]

α[5] ∼ U{−1, 1}

Note that α[1, 2, 3, 4] define the 2-D positions of two targets. For clarity, we will
refer to these values respectively by αx1 ,αy1 ,αx2 and αy2 .

Initial state distribution:
The initial state x0 is drawn through two auxiliary random variables that represent the
x and y initial coordinates of the agent and are denoted ux0 , u

y
0. At the beginning of an

episode, those variables are drawn as follows:

uk0 ∼ U[−1.5, 1.5] ∀k ∈ {x, y} .

From those six auxiliary variables, we define x0 as:

x0 = [αx1 − ux0 , αy1 − u
y
0, α

x2 − ux0 , αy2 − u
y
0] .

Transition function:
For all i ∈ {1, 2} let targeti be the set of points (x, y) ∈ R2 such that√

(x− αxi)2 + (y − αyi)2 ≤ 0.4 .

. When taking action at in state xt, drawing the state xt+1 from the transition function
amounts to first compute uxt+1 and uyt+1 according to the following procedure:

1. If ∃i ∈ {1, 2} : (uxt , u
y
t ) ∈ targeti, which means that the agent is in one of the two

targets, then ukt+1 ∼ U[−1.5, 1.5] ∀k ∈ {x, y}

2. If the preceding condition is not met, uxt+1 and uyt+1 are computed by the following
sub-procedure:

(a) Step one:
uxt+1 = uxt + sin(at ∗ π) ∗ 0.25

uyt+1 = uyt + cos(at ∗ π) ∗ 0.25 .

This step moves the agent in the direction it has chosen.

(b) Step two: In the case where the coordinates computed by step one lay outside
[−2; 2]2, they are corrected so as to model the fact that when the agent
reaches an edge of the 2D space, it is moved to the opposite edge from which
it continues its move. More specifically, ∀k ∈ {x, y}:

ukt+1 ←


ukt+1 − 4.0 if ukt+1 > 2

ukt+1 + 4.0 if ukt+1 < −2

ukt+1 otherwise .

Once uxt+1 and uyt+1 have been computed, xt+1 is set equal to [αx1 − uxt+1, α
y1 −

uyt+1, α
x2 − uxt+1, α

y2 − uyt+1].
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Reward function:
In the case where (uxt , u

y
t ) either belongs to only target1, only target2 or none of them,

the reward function can be expressed as follows:

ρ(at, xt, xt+1) =


100 ∗α[5] if (uxt , u

y
t ) ∈ target1 ∧ (uxt , u

y
t ) 6∈ target2

−50 ∗α[5] if (uxt , u
y
t ) ∈ target2 ∧ (uxt , u

y
t ) 6∈ target1

0 if (uxt , u
y
t ) 6∈ target1 ∧ (uxt , u

y
t ) 6∈ target2 .

In the case where (uxt , u
y
t ) belongs to both target1 and target2, that is (uxt , u

y
t ) ∈

target1 ∧ (uxt , u
y
t ) ∈ target2, the reward function can be expressed as follows:

ρ(at, xt, xt+1) =

{
100 ∗α[5] if

√
(uxt − px1)2 + (uyt − py1)2 ≤

√
(uxt − px2)2 + (uyt − py2)2

−50 ∗α[5] otherwise .

That is, we consider that the agent belongs to the target to which it is closer to the
centre.

2 Advantage actor-critic with generalized advantage
estimation

In our meta-RL setting, both the actor and the critic are parametric functions that
are defined on the trajectories’ histories. With θ ∈ Θ and ψ ∈ Ψ the parameters of
the actor and critic (Θ and Ψ are the actor and critic parameters spaces), respectively,
we define πθ and cψ as the policy and critic functions. Let πθk and cψk be the models
for the policy and the critic after k updates of the parameters θ and ψ, respectively.
To update from θk to θk+1 and ψk to ψk+1, the actor-critic algorithm uses the pol-
icy πθk to select actions during B MDPs drawn sequentially from D, where B ∈ N0

is a parameter of the actor-critic approach. This interaction between the actor-critic
algorithm and the meta-RL problem is presented in a tabular version in Algorithm 1 (2.1).

Using the L ∈ N0 first elements of each trajectory generated from the interaction
with the B MDPs and the values of θk and ψk, the algorithm computes θk+1 and ψk+1.
To this end, the algorithm exploits the set [hB∗k,L, . . . , hB∗(k+1)−1,L], which we denote
as Hk. Note that we use a replay buffer for updating ψ, thus for this update we also use
several previous sets Hk−1, Hk−2, etc... A tabular version of the algorithm that details
how MDPs are drawn and played, as well as how the set Hk is built, is presented in
Algorithm 2 of Appendix 2.1. Let RπθM denote the sum of discounted rewards obtained
when playing policy πθ on task M. That is,

RπθM = lim
T→∞

T∑
t=0

γtrt

where rt are the rewards gathered at each time-step. To have a properly performing
actor-critic algorithm, the value chosen for L has to be chosen sufficiently large to
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produce an accurate estimation of the returns R
πθk
Mi
∀i ∈ [B ∗ k, . . . , B ∗ (k + 1) − 1]

obtained by the policy πθk .

When used in a classical RL setting, an AC algorithm should interact with its
environment to find the value of θ that leads to high values of the expected return given
a probability distribution over the initial states. This expected return is written as:

E
x0∼Px0 (·)
at∼πθ∀t

RπθM (1)

where M denotes the Markov Decision Process with which the AC algorithm interacts.
When working well, actor critic algorithms produce a sequence of policies πθ1 , πθ2 ,
πθ3 , . . . whose expected returns increase as the iterative process evolves and eventually
reaches values close to those obtained by πθ∗M with θ∗M = arg max

θ∈Θ
E

x0∼Px0 (·)
at∼πθ∀t

RπθM, which,

if πθ is flexible enough, are themselves close to those obtained by an optimal policy π∗M
defined as:

π∗M ∈ arg max
π∈Π

E
x0∼Px0 (·)
at∼πθ∀t

RπM (2)

where Π is the set of all admissible policies.

Let ht = {x0, a0, r0, . . . , xt} be a trajectory generated by policy πθ on M and let
JπθM(ht) be the expected sum of discounted rewards that can be obtained while starting
from ht and playing the policy πθ in this environment, that is:

JπθM(ht) =

∞∑
j=t

γj−tρM(xj , aj ∼ πθ(hj), xj+1) (3)

where ρM(xj , aj , xj+1) is the reward function of task M. In a classical RL setting, and
again for an efficient AC algorithm, the value of the critic for ht, cψ(ht), also converges

to J
πθ∗M
M (ht). We also note that in such a setting, the critic is updated at iteration k + 1

in a direction that provides a better approximation of J
πθk
M (·). Now, let us go back to

our meta-RL problem and let V π denote the expected sum of returns that policy π can
obtain on this problem:

V π = E
x0∼Px0 (·)
at∼πθ∀t
M∼D

. (4)

Let θ∗ ∈ arg max
θ∈Θ

V πθ . When interacting with our meta-RL problem, a performant AC

algorithm should, in principle, converge towards a policy πθ̂∗ , leading to a value of

V πθ̂∗ close to V π
∗
θ that is itself close to max

π∈Π
V π. A policy π∗ such that π∗ ∈ arg max

π∈Π
V π

is called a Bayes optimal policy in a Bayesian RL setting where the distribution D
is assumed to be known. If we are working with policies that are, indeed, able to
quickly adapt to the environment, we may also expect that the policy πθ̂∗ learned by the
algorithm is such that, when applied on an M belonging to the support of D, it leads to
a value of J

πθ̂∗
M (ht) close to max

π∈Π
JπM(ht) as t increases. In other words, once the agent

has gathered enough information to adapt to the current MDP, it should start behaving
(almost) optimally. This is the essence of meta-RL.

We may also expect that, in such case, the value of the critic for ht when the budget
is exhausted closely estimates the expected value of the future discounted rewards that
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can be obtained when using policy πθ̂
∗

and after having already observed a trajectory
ht. Therefore, we may also expect that once the episode budget is exhausted, cψ(ht):

1. will be close to E
M∼D

J
πθ̂∗
M (ht) ' E

M∼D
max
π∈Π

JπM(ht) if ht = {x0};

2. will, as t increases, tend to get closer to max
π∈Π

JπM(ht) ' J
πθ̂∗
M (ht) where M can be

any environment belonging to the support of D used to generate ht.

Existing actor-critic algorithms mainly differ from each other by the way the actor
and critic are updated. While in early actor-critic algorithms the critic was directly
used to compute the direction of update for the actor’s parameters (see for example the
REINFORCE policy updates [1]), now it is more common to use an advantage function.
This function represents the advantage in terms of return of selecting specific actions
given a trajectory history (or simply a state when AC algorithms are used in a standard
setting) over selecting them following the policy used to generate the trajectories. Here,
we use generalised advantage estimations (GAE), as introduced in [2]. More recently,
it has been shown that avoiding too large policy changes between updates can greatly
improve learning ( [3], [4]). Therefore, while in classical AC algorithms the function used
to update the actor aims at representing directly the gradient of the actor’s return with
respect to its parameters, we rather update the actor’s parameters θ by minimising a loss
function that represents a surrogate objective. We have selected as surrogate function
one that is similar to the one introduced in [4] with an additional loss term that proved
to improve (albeit slightly) the performances of PPO in all cases.

As our actor and critic are modelled by differentiable functions, they are both updated
through gradient descent. We now proceed to explain the losses use to compute the
gradient for both the actor and the critic.

Actor update First, we define the temporal error difference term for any two consec-
utive time-steps of any trajectory:

TDi = ri + γ ∗ cψk(hi+1)− cψk(hi), ∀i ∈ [0, . . . , L]

where ψk denotes the critic’s parameters for playing the given trajectory. This
temporal difference term represents, in some sense, the (immediate) advantage obtained,
after having played action aj over what was expected by the critic. If cψk(·) was the

true estimate of J
πθk
M (·) and if the policy played was πθk , the expected value of these

temporal differences would be equal to zero. We now define the GAE’s terms that will
be used later in our loss functions:

GAEji =

L∑
t=i

(γ ∗ λ)t−i ∗ TDj
t , ∀j ∈ [1, . . . , E], i ∈ [0, . . . , L′] (5)

where λ ∈ [0, 1] is a discount factor used for computing GAEs, TDj
i is the value of TDi

for trajectory j, and where L′ is another hyper-parameter of the algorithm, chosen in
combination with L in order to have a value of GAEji that accurately approximates
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∑∞
t=i(γ ∗ λ)t−i ∗ TDj

t ∀i, j. Note that the value chosen for L′ also has to be sufficiently
large to provide the loss function with a sufficient number of GAE terms. These GAE
terms, introduced in [2], represent the exponential average of the discounted future
advantages observed. Thanks to the fact that GAE terms can catch the accumulated
advantages of a sequence of actions rather than of a single action, as it is the case with
the temporal difference terms, they can better represent the advantage of the new policy
played by the AC algorithm over the old one (in terms of future discounted rewards).

In the loss function, we will actually not use the advantage terms as defined by
Equation 5, but normalised versions in order to have advantages that remain in a
similar range regardless of rewards magnitude. Thanks to this normalisation, the policy
learning rate does not have to be tuned according to the loss magnitude. However,
this normalisation does not mask actions that have led to higher or lower returns than
average. We normalize as follows ∀k ∈ [1, . . . , E] with E the number of actor and critic
updates that have been carried:

µgae =

B−1∑
j=0

[

L′−1∑
i=0

GAEB∗k+j
i ]

σgae =

√√√√B−1∑
j=0

[

L′−1∑
i=0

(µgae −GAEB∗k+j
i )2]

GAEji =
GAEB∗k+j

i − µgae
σgae

∀(j, i) ∈ ([0, . . . , B − 1] ∗ [0, . . . , L′ − 1])

where
∑

is the symbol we use to represent the average sum operator (i.e.
∑m
x=1 f(x) =∑m

x=1
f(x)
m ). To define the loss functions used to compute θk+1 and ψk+1, only the GAE

terms corresponding to time-steps [0, . . . , L′] of episodes [B ∗ k, . . . , B ∗ (k + 1)− 1] are
computed. A tabular version of the algorithm used to compute these terms is given in
Algorithm 3 of Appendix 2.1 1.

Once advantages have been computed, the values of θk+1 are computed using updates
that are strongly related to PPO updates with a Kullback Leibler (KL) divergence
implementation [4]. The loss used in PPO updates is composed of two terms: a classic
policy gradient term and a penalisation term. Let us now present a standard policy
gradient loss, note that from now on, we will refer to the value of at, xt and ht at episode
i by ait, x

i
t and hit respectively.

Lvanilla(θ) = −
∑

(i,t)∈Bk

πθ(a
i
t|hit)

πθk(ait|hit)
∗GAEit . (6)

1Although not explicitly written in the text for clarity, we use a normalisation technique when
computing discounted sums for the AC algorithm update. In fact, when carrying an update of the AC
algorithm, if rewards appear in discounted sums, they are multiplied by (1 − γ). This has for effect
that the discounted sum values remain of the same magnitude regardless of γ. The implications of this
normalization are two-fold. (i) The critic does not directly approximate JπM(·) but rather (1−γ)∗JπM(·).
(ii) Second, for the temporal differences to remain coherent with this normalisation, ri must also be
multiplied by (1− γ) when computing TDi. Those two small changes are included in Algorithm 3.
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where Bk is the set of all pairs (i, t) for which i, t ∈ ([B∗k, . . . , B∗(k+1)−1]∗ [0, . . . , L′]),
that is, the set containing the first L′ time-steps of the B trajectories played for iteration
k of the actor-critic algorithm.

One can easily become intuitive about Equation 6 as, given an history hit, minimising
this loss function tends to increase the probability of the policy taking actions leading
to positive advantages (i.e. GAEit > 0) and decreases its probability to take actions
leading to negative advantages (i.e. GAEit < 0). It has been found that to obtain good
performances with this above-written loss function, it was important to have a policy
that does not change too rapidly from one iteration to the other. Before explaining how
this can be achieved, let us first give an explanation on why it may be important to
have slow updates of the policy. Let us go back to the loss function given by Equation 6.
Minimising this loss function will give a value for θk+1 that will lead to higher probabilities
of selecting actions corresponding to high values of the advantages GAEit . A potential
problem is that these advantages are not really related to the advantages of the would-be
new policy πθk+1

over πθk but are instead related to the advantages of policy πθk over
πθk−1

. Indeed, the advantages GAEit are computed using the value function cψk , whose
parameters have been updated from ψk−1 in order to better approximate the sum of
discounted rewards obtained during the episodes [B ∗ (k − 1), . . . , B ∗ k − 1]. It clearly
appears that ψk has, in fact, been updated to approximate discounted rewards obtained
through the policy πθk−1

(used to play episodes for update k − 1). A solution to this
problem is to constraint the minimisation to reach a policy πθk+1

that does not stand too
far from πθk . We may reasonably suppose that the advantage function used in (6) still
correctly reflects the real advantage function of πθk+1

over πθk . To achieve this, we add
a penalisation term P(θ) to the loss function. In the PPO approach, the penalisation
term is Pppo(θ) = βk ∗ d(θ), where:

i) βk is an adaptive weight

ii) d(θ) =
∑

[i,t]∈Bk [KL(πθk(.|hi,t), πθ(.|hi,t))], where KL is the Kullback-Leibler diver-
gence, detailed later on. This term penalises policies that are too different from
πθk .

We note that the βk dynamical updates use a hyper-parameter dtarg ∈ N0 called
the divergence target. The update is done through the following procedure (note that,
unlike updates of β proposed in [4], we constrain β to remain in the range [βmin, βmax];
we explain later why):

βk+1 =


max(βmin,

βk
1.5 ) if d(θ) <

dtarg
2.0

min(βmax, βk ∗ 1.5) if d(θ) > dtarg ∗ 2

βk otherwise .

(7)

With this update strategy, the penalisation term will tend to evolve in a way such
that the KL divergence between two successive policies does not tend to go beyond dtarg
without having to add an explicit constraint on d, as was the case in Trust Region Policy
Optimization (TRPO) updates [3], which is more cumbersome to implement.

As suggested in [5], adding another penalisation term (squared hinge loss) to PPPO
to further penalise the KL divergence, in cases where it surpasses 2 ∗ dtarg, improved
algorithm performance. The final expression of the penalisation term is:
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P(θ) = βk ∗ d(θ) + δ ∗max(0, d(θ)− 2 ∗ dtarg)2

where δ is a hyper-parameter that weights the third loss term. The loss function Lpolicy
that we minimise as a surrogate objective becomes:

Lpolicy(θ) = Lvanilla(θ) + P(θ) (8)

We now detail how to compute the KL divergence. First, let us stress that we
have chosen to work with multi-variate Gaussian policies for the actor. This choice is
particularly well suited for MDPs with continuous action spaces. The approximation
architecture of the actor will therefore not directly output an action, but the means
and standard deviations of an m-dimensional multi-variate Gaussian from which the
actor’s policy can be defined in a straightforward way. For each dimension, we bound
the multi-variate Gaussian to the support, U , by playing the action that is clipped to
the bounds of U whenever the multi-variate Gaussian is sampled outside of U . In the
remaining of this paper, we will sometimes abusively use the terms ”output of the actor
at time t of episode i” to refer to the means vector µθki,t and the standard deviations

vector σθki,t that the actor uses to define its probabilistic policy at time-step t of episode i.
Note that we have chosen to work with a diagonal covariance matrix for the multi-variate
Gaussian distribution. Its diagonal elements correspond to those of the vector σθki,t. We
can then compute the KL divergence in each pair [i, t] following the well-established
formula:

KL(πθk(·|hit), πθ(·|hit)) =

1

2
{tr(Σ−1

θ,i,tΣθk,i,t) + (µθi,t − µ
θk
i,t)

TΣ−1
θ,i,t(µ

θ
i,t − µ

θk
i,t)− k + ln(

|Σθ,i,t|
|Σθk,i,t|

)} (9)

where Σθk,i,t,Σθ,i,t are the diagonal covariance matrices of the two multi-variate Gaussian

distributions πθk(·|hit), πθ(·|hit) that can be derived from σθki,t and σθi,t. The loss function

Lvanilla can be expressed as a function of Σθk,i,t, Σθ,i,t, µ
θ
i,t and µθki,t when working with

a multi-variate Gaussian. To this end, we use the log-likelihood function ln (πθ(ai,t|hit)),
which gives the log-likelihood of having taken action ait given a trajectory history hit. In
the case of a multi-variate Gaussian, ln (πθ(a

i
t|hit)) is defined as:

ln (πθ(a
i
t|hit)) = −1

2
(ln(|Σθ,i,t|) + (ait − µθi,t)T ∗Σ−1

θ,i,t ∗ (ait − µθi,t) +m ∗ ln(2 ∗ π)) (10)

where m is the dimension of the action space and where |Σθ,i,t| represents the determinant
of the matrix. From this definition, one can rewrite Lvanilla as:

Lvanilla = −
∑

[i,t]∈Bk

eln (πθ(ait|h
i
t))−ln (πθk (ait|h

i
t)) ∗GAEit . (11)

By merging equation (11), (10) and equation (8), one gets a loss Lpolicy that depends

only on Σθk,i,t, Σθ,i,t, µ
θ
i,t and µθki,t.

Critic update The critic is updated at iteration k in a way to better approximate the
expected return obtained when following the policy πθk , starting from a given trajectory
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history. To this end, we use a mean-square error loss as a surrogate objective for
optimizing ψ. First, we define R̂ij =

∑L
k=j γ

k−j ∗ rij ∀i, j ∈ [B ∗ k, . . . , B ∗ (k + 1) −
1], [0, . . . , L]. From the definition of R̂ij we express the loss as:

Lcritic(ψ) =
∑

(i,t)∈Bk−CRB

[(cψ(hit)− R̂it)2] (12)

where (i) crb ∈ N0 is a hyper-parameter; (ii) Bk−crb is the set of all pairs (i, t) for which
i, j ∈ ([B ∗(k−crb), . . . , B ∗(k+1)−1]∗ [0, . . . , L′]). The set Bk−crb used in (12) contains
all the pairs from the current trajectory batch and from the crb previous trajectory
batches. We call this a replay buffer whose length is controlled by crb which stands for
”criticreplaybuffer”. Minimising Lcritic does not lead to updates such that cψ directly
approximates the average expected return of the policy πθk . Rather, the updates are
such that cψ directly approximates the average expected return obtained by the last
crb+ 1 policies played. We found out that using a replay buffer for the critic smoothed
the critic’s updates and improved algorithm performances.

Note that the loss (12) is only computed on the L′ << L first time-steps of each
episode, as was the case for the actor. The reason behind this choice is simple. The value
function cψk should approximate Rij =

∑+∞
t=j γ

t−j ∗ rit for every hij , where Rij the infinite

sum of discounted rewards that are attainable when ”starting” from hij . However, this
approximation can become less accurate when j becomes close to L since we can only

guarantee R̂ij to stand in the interval: [Rij −
γL−j

1−γ Rmax, R
i
j −

γL−j

1−γ Rmin]. Hence this

choice of L′.

Gradients computation and update The full procedure is available as Tabular
versions in 2.1. As a summary, we note that both the actor and critic are updated using
the Adam procedure ( [6]) and back-propagation through time ( [7]). The main difference
between both updates is that the actor is updated following a full-batch gradient descent
paradigm, while the critic is updated following a mini-batch gradient descent paradigm.
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2.1 Tabular version

Algorithm 1 Advantage actor-critic with generalised advantage estimate for solving
the meta-RL problem

1: Run(D, E, hyperparameters0)
2: Inputs:

[1] D : The distribution over MDPs.

[2] E : The total episodes budget.

[3] hyperparameters0 : The set of hyper-parameters that contains the follow-
ing elements:

•B : Number of episodes played between updates.
•Pθ0 and Pψ0

: The distributions for initialising actor and critic’s
parameters. Those distributions are intrinsically tied to the models
used as function approximators.

•λ ∈ [0, 1] : The discount factor for computing GAE.
•L : Number of time steps played per episode.
•L′ : Number of time steps per episode used to compute gradients.
•ea : The number of epochs per actor update.
•ec : The number of epochs per critic update.
•η : The squared hinge loss weight.
•dtarg : The KL divergence target.
•dthresh : The threshold used for early stopping.
•βmin and βmax : The minimum and maximum β values.
•β0 : The initial value of βk for penalising the KL divergence.
•alr0 : The initial value of the policy learning rate alrk .
•cv0 , cz0 , av0 and az0 : The initial value for the ADAM optimiser
moments cvk , czk , avk and azk .

•ε, ω1, ω2 : The three ADAM optimiser hyper-parameters.
•clr : The critic learning rate.
•cmb : The mini-batch size used for computing the critic’s gradient.
•crb : The number of previous trajectory batches used in the replay
buffer for the critic.

We note that some of the hyper-parameters are adaptive. These are βk, alrk ,
cvk , czk , avk and azk . Thus the hyper-parameter vector may have to change in
between iterations. For this reason we introduce the notation hpk which represents
the hyper-parameter vector with the values of the adaptive parameters at iteration
k.

3: hp0 ← hyperparameter0

4: k ← 0
5: θ0 ∼ Pθ0(.) . Random initialisation
6: ψ0 ∼ Pψ0

(.) . Random initialisation
7: while B ∗ k < E do
8: Hk = run episodes(k, θk,D, hpk)
9: θk+1, ψk+1= update ac(Hmax(0,k−CRB), . . . ,Hk,θk,ψk,hpk)

10: k ← k + 1
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Algorithm 2 Kth run of B episodes

1: run episodes(k, θk, D, hpk)
2: Inputs:

[1] θk : The parameters of the policy at iteration k.

[2] D : The distribution from which the MDPs are sampled.

[3] hpk : In this procedure, we use as hyper-parameters:

•B : The number of episodes to be played.
•L : The number of time steps played by episode.

3: Output:

[1] Hk : The set of B trajectories [hB∗kL , hB∗(k+1),L, . . . , h
B∗(k+1)−1
L ] played

during this procedure.

4: i← B ∗ k
5: while i < B ∗ k +B do
6: t← 0
7: M∼ D
8: xit ∼ Px0(.)
9: hit = [xit]

10: while t <= L do
11: ait ∼ πθk(hit)
12: xit+1 ∼ PM(xit+1|xit, ait) . The right-side refers to P (xit+1|xit, ait) of current

task M.
13: rit = ρM(xit, a

i
t, x

i
t+1) . The right-side refers to ρ(xt+1, xt, at) of M.

14: hit = [xi0, a
i
0, r

i
0, . . . , x

i
t]

15: t← t+ 1

16: i← i+ 1

17: Return Hk = [hB∗kL , . . . , h
B∗(k+1)−1
L ]
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Algorithm 3 Kth update of the actor critic model

1: update ac(Hk−crb, . . . ,Hk, θk, ψk, hpk)
2: Inputs:

[1] Hk−crb, . . . ,Hk : The crb+ 1 last sets of B trajectories of length L.

[2] θk and ψk : The parameters of the actor and critic after k updates.

[3] hpk : In this procedure, we use as hyper-parameter:

•λ ∈ [0, . . . , 1] : The discount factor for computing GAE.
•alrk : The current policy learing rate.
•βk : The current KL divergence penalisation.

3: Output:

[1] θk+1, ψk+1 : The updated actor and critic parameters.

4: i← B ∗ k
5: D← ∅
6: while i < B ∗ k +B do
7: Di

j =
∑L
t=j γ

t−j ∗ rj ∗ (1− γ), ∀j ∈ [0, . . . , L− 1]

8: D← D ∪Di
j

9: TDj = (1− γ) ∗ rj − cψk(hj) + γ ∗ cψk(hj+1), j ∈ [0, . . . , L− 1]

10: GAEij =
∑L
t=j(γ ∗ λ)t−j ∗ TDt, ∀j ∈ [0, . . . , L− 1]

11: µ =
∑B∗(k+1)−1
i=B∗k

∑L−1
j=0 GAE

i
j

12: σ =
√∑B∗(k+1)−1

i=B∗k
∑L−1
j=0 (µ−GAEij)2

13: GAEij ←
GAEij−µ

σ ∀i ∈ [B ∗ k, . . . , B ∗ (k + 1)− 1], j ∈ [0, . . . , L− 1]

14: A = [GAEB∗k+i
j , ∀(i, j) ∈ ([0, . . . , B − 1] ∗ [0, . . . , L])]

15: θk+1 = update policy parameters(Hk, A, θk, hpk)
16: ψk+1= update critic parameters(Hk−crb, . . . ,Hk, D, ψk, hpk)
17: Return θk+1, ψk+1
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Algorithm 4 Update from θk to θk+1

1: update policy parameters(Hk, A,θk,hpk)
2: Inputs:

[1] Hk : The set of B trajectories of length L.

[2] θk : The actor’s parameters.

[3] ε, ω1 and ω2 : The three ADAM optimizer hyper-parameters.

[4] hpk : In this procedure, we use as hyper-parameters:

•eactor : The number of epochs per actor update.
•η : The squared hinge loss weight.
•dtarg : The KL divergence target.
•dthresh : The threshold used for early stopping.
•L′ : The number of time-steps per trajectory used for computing
gradients.

•βk : The KL penalisation weight.
•alrk : The actor learning rate.
•avk and azk : The last ADAM moments computed at iteration k − 1.

3: Output:

[1] θk+1 : The updated actor parameters.

4: m← 0
5: B ← [(B ∗ k + i, j), ∀(i, j) ∈ ([0, . . . , B − 1] ∗ [0, . . . , L′])]
6: θ′ ← θk
7: a′v ← avk
8: a′z ← azk
9: while m < AE do

10: Lvanilla = −
∑

(i,t)∈B
πθ(ait|h

i
t)

πθk (ait|hit)
∗GAEit

11: d =
∑

(i,t)∈BKL(πθk(.|hij), πθ(.|hij))
12: s = [max(0, (d− 2 ∗ dtarg))]2
13: Lpolicy = Lvanilla + βk ∗ d+ η ∗ s
14: ∇θLpolicy(θ′) = compute gradients(Lpolicy,Bk, θ′)

15: a′lr = alrk ∗
√

1−ωk∗eactor+m2

1−ωk∗eactor+m1

16: a′z ← ω1 ∗ a′z + (1− ω1) ∗ ∇θLpolicy(θ′)
17: a′v ← ω2 ∗ a′v + (1− ω2) ∗ ∇θLpolicy(θ′)�∇θLpolicy(θ′)

18: θ′ ← θ′ − a′lr∗a
′
z√

a′v+ε

19: m← m+ 1
20: if d > dthreshold ∗ dtarg then . Early stop
21: θ′ ← θk
22: m← eactor
23: update auxiliary parameters(d, hpk)
24: avk+1

← a′v
25: azk+1

← a′z
26: θk+1 ← θ′

27: Return θk+1

June 5, 2020 14/26



Algorithm 5 Actor auxiliary parameters update

1: update auxiliary parameters(d,hpk)
2: Inputs:

[1] d : The KL divergence between πθk and πθk+1
empirically averaged.

[2] hpk : In this procedure, we use as hyper-parameters:

•dtarg : The KL divergence target.
•βmin and βmax : The minimum and maximum β values.
•βk : The current KL penalisation weight.
•alrk : The current actor learning rate.

3: if d > 2 ∗ dtarg then
4: βk+1 ← min(βmax, βk ∗ 1.5)
5: if βk > 0.85 ∗ βmax then
6: alrk+1

← alrk
1.5

7: else if d <
dtarg

2 then

8: βk+1 ← max(βmin,
βk
1.5 )

9: if βk < 1.15 ∗ βmin then
10: alrk+1

← alrk ∗ 1.5

June 5, 2020 15/26



Algorithm 6 Update from ψk to ψk+1

1: update critic parameters(Hk−CRB , . . . ,Hk, D,ψk,hpk)
2: Inputs:

[1] Hk−CRB , . . . ,Hk : The crb+ 1 last sets of trajectories of length L.

[2] ψk : The critic’s parameters.

[3] hpk : In this procedure, we use as hyper-parameters:

•ecritic : The number of epochs per critic update.
•cmb : The mini-batch size used for computing the critic’s gradient.
•T : A hyper-parameter of our gradient estimate.
•crb : The replay buffer size.
•clr : The critic learning rate.
•L′ : The number of time-steps per trajectory used for computing
gradients.

•cvk and czk : The last ADAM moments computed at iteration k − 1.

3: Output:

[1] ψk+1 : The updated critic parameters.

4: m← 0
5: c′v ← cvk
6: c′z ← czk
7: T(i,t) = [[i, t ∗ T ], . . . , [i,max((t+ 1) ∗ T − 1, L′)]] ∀(i, t) ∈ ([B ∗ (k − CRB), . . . , B ∗

(k + 1)− 1] ∗ [0, . . . , bL
′

T c])
8: BT = [(B ∗ (k − crb) + i, j)∀(i, j) ∈ ([0, . . . , B ∗ (crb+ 1)− 1] ∗ [0, . . . , bL

′

T c])]
9: ψ′ ← ψk

10: eiter ← ecritic ∗ d |BT |cmb∗T e
11: S ← ∅
12: while m < eiter do
13: p← 0, Y ← ∅
14: while p < cmb ∧ BT \ S 6= ∅ do
15: (icur, tcur) ∼ BT \ S
16: S ← S ∪ (icur, tcur)
17: Y ← Y ∪ Ticur,tcur
18: p← p+ 1

19: if BT \ S = ∅ then
20: S ← ∅
21: Lsur(ψ) =

∑
(i,t)∈Y (cψ(hit)−Di

t)
2

22: ∇ψLsur(ψ′,Y) = compute gradients(Lsur,Y, ψ′)

23: c′lr = clr ∗
√

1−ωk∗eiter+m2

1−ωk∗eiter+m1

24: c′z = ω1 ∗ c′z + (1− ω1) ∗ ∇ψLsur(ψ′,Y)
25: c′v = ω2 ∗ c′v + (1− ω2) ∗ ∇ψLsur(ψ′,Y)�∇ψLsur(ψ′,Y)

26: ψ′ ← ψ′ − c′lr∗c
′
z√

c′v+ε

27: m← m+ 1

28: cvk+1
← c′v

29: czk+1
← c′z

30: ψk+1 ← ψ′

31: Return ψk+1
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Algorithm 7 Gradient computing with BPTT [7]

1: compute gradients(L(α),Z, α′, hpk)
2: Inputs:

[1] L(α) : A loss function which is dependent on a function approximate
v(α)·,·.

[2] Z : The set of pairs (i, j) such that v(α)i,j appears in L(α). . We
emphasise that from the way Z is built (see Algorithms 4 and 6), most
of the time Z contains x batches of T consecutive pairs. Note that very
rarely, batches may have fewer than T consecutive pairs (whenever a batch
contains the last pairs of an episode which does not contain a multiple of T
pairs), although, the same gradient descent algorithm can still be applied.

[3] α′ : The element for which the estimate gradient of L(α) needs to be
evaluated.

[4] hpk : In this procedure, we use as hyper-parameter:

•T : The number of time-steps for which the gradient can propagate.

3: Output:

[1] ∇αL(α′) : The gradient estimate of the function L(α) evaluated in α′.

. We refer the reader to the source code
which is available on Github (https://github.com/nvecoven/nmd_net), which is a
particular implementation of standard BPTT [7]. We note that giving a full tabular
version of the algorithm here would not constitute valuable information to the reader,
due to its complexity/length.

3 Architecture details

For conciseness, let us denote by fn a hidden layer of n neurons with activation functions
f , by→ a connection between two fully-connected layers and by ( () a neuromodulatory
connection (as described in Section ??).

Benchmark 1. The architectures used for this benchmark were as follows:

• RNN : GRU50 → ReLU20 → ReLU10 → I1

• NMN : GRU50 → ReLU20 ( (SReLU10 → I1)

Benchmark 2 and 3. The architectures used for benchmark 2 and 3 were the same
and as follows:

• RNN : GRU100 → GRU75 → ReLU45 → ReLU30 → ReLU10 → I1

• NMN : GRU100 → GRU75 → ReLU45 ( (ReLU30 → ReLU10 → I1)
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4 Hyper-parameter values

B 50
λ 0.98
γ 0.998
β0 1
βmin 1/30
βmax 30
dtarg 0.003
alr0 2 ∗ 10−4

ω1 0.9
ω2 0.999
ε 10−8

eactor 20
crb 2
cmb 25
clr 6 ∗ 10−3

T 200
ecritic 10

cv0 , cz0 , av0 , az0 0
η 50

Table 1. Value of the hyper-parameters that are kept constant for every benchmark in
this paper.

Table 1 provides the values of all the hyper-parameters used for training.
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5 Bayes optimal policy for benchmark 1

A Bayes optimal policy is a policy that maximises the expected sum of rewards it obtains
when playing an MDP drawn from a known distribution D. That is, a Bayes optimal
policy π∗bayes belongs to the following set:

π∗bayes ∈ arg max
π∈Π

E
M∼D
x0∼Px0
a·∼π(.)

x·∼PM(.,.)

RπM ,

with PM being the state-transition function of the MDP M and RπM the discounted
sum of reward obtained when playing policy π on M.

In the first benchmark, the MDPs only differ by a bias, which we denote α. Drawing an
MDP according to D amounts to draw a value of α according to a uniform distribution
of α over [−αmax, αmax], denoted by Uα, and to determine the transition function and
the reward function that correspond to this value. Therefore, we can write the previous
equation as:

π∗bayes ∈ arg max
π∈Π

E
α∼Uα
x0∼Px0
a·∼π(.)

x·∼PM(α)(
.,.)

RπM ,

with M(α) being a function giving as output the MDP corresponding to α and Π the
set of all possible policies.

We now prove the following theorem.

Theorem 1 The policy that selects:

1. at time-step t = 0 the action a0 = x0 + γ∗(αmax+4.5)
1+γ

2. at time-step t = 1

a) if r0 = 10, the action a1 = x1 + a0 − x0

b) else if |r0| > αmax − (a0 − x0) ∧ a0 − x0 > 0, the action a1 = a0 + r0

c) else if |r0| > αmax − (x0 − a0) ∧ a0 − x0 < 0, the action a1 = a0 − r0

d) and otherwise the action a1 = a0 + r0 + 1

3. for the remaining time-steps:

a) if r0 = 10, the action at = xt + a0 − x0

b) else if r1 = 10, the action at = xt + a1 − x1

c) and otherwise the action at = xt + it where it is the unique element of the
set {a0 − x0 + r0; a0 − x0 − r0} ∩ {a1 − x1 + r1; a1 − x1 − r1}

is Bayes optimal for benchmark 1.
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Proof Let us denote by π∗theorem1 the policy described in this theorem. To prove this
theorem, we first prove that in the set of all possible policies Π there are no policy π
which leads to a higher value of

E
M∼D
x0∼Px0
a·∼π(.)

x·∼PM(.,.)

(r0 + γ ∗ r1) (13)

than π∗theorem1. Or equivalently:

E
M∼D
x0∼Px0

a·∼π∗theorem1
(.)

x·∼PM(.,.)

(r0 + γ ∗ r1) ≥ E
M∼D
x0∼Px0
a·∼π(.)

x·∼PM(.,.)

(r0 + γ ∗ r1) ∀π ∈ Π . (14)

Afterwards, we prove that the policy π∗theorem1, generates for each time-step t ≥ 2 a
reward equal to Rmax which is the maximum reward achievable, or written alternatively
as:

E
M∼D
x0∼Px0

a·∼π∗bayes(
.)

x·∼PM(.,.)

(

∞∑
t=2

γt ∗ rt) =

∞∑
t=2

γt ∗Rmax ≥ E
M∼D
x0∼Px0
a·∼π(.)

x·∼PM(.,.)

(

∞∑
t=2

γt ∗ rt) ∀π ∈ Π . (15)

By merging (14) and (15), we have that

E
M∼D

x0∼Px0 (.)

a·∼πtheorem1(.)

x·∼PM(.,.)

(

∞∑
t=0

γt ∗ rt) ≥ E
M∼D

x0∼Px0 (.)

a·∼π(.)
x·∼PM(.,.)

(

∞∑
t=0

γt ∗ rt) ∀π ∈ Π

which proves the theorem.

. Part 1. Let us now prove inequality (14). The first thing to notice is that for a
policy to maximise expression (13), it only needs to satisfy two conditions for all x0. The
first one: to select an action a1, which knowing the value of (x0, a0, r0, x1), maximises
the expected value of r1. We denote by V1(x0, a0, r0, x1) the maximum expected value
of r1 that can be obtained knowing the value of (x0, a0, r0, x1). The second one: to
select an action a0 knowing the value of x0 that maximises the expected value of the
sum r0 + γV1(x0, a0, r0, x1). We now show that the policy πtheorem1 satisfies these two
conditions.

Let us start with the first condition that we check by analysing four cases, which
correspond to the four cases a), b), c), d) of policy πtheorem1 for time step t = 1.

a) If r0 = 10, the maximum reward that can be obtained, we are in a context where a0

belongs to the target interval. It is easy to see that, by playing a1 = x1 + a0 − x0,
we will obtain r1 equal to 10. This shows that in case a) for time step t = 1,
πtheorem1 maximises this expected value of r1.
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b) If |r0| > αmax − (a0 − x0) ∧ a0 − x0 > 0 and r0 6= 10 it is easy to see that the
value of α to which the MDP corresponds can be inferred from (x0, a0, r0) and
that the action a1 = a0 + r0 will fall in the middle of the target interval, leading
to a reward of 10. Hence, in this case also, the policy πtheorem1 maximises the
expected value of r1.

c) If |r0| > αmax − (x0 − a0) ∧ a0 − x0 < 0 and r0 6= 10, we are also in a context
where the value of α can be inferred directly from (x0, a0, r0) and the action
a1 = a0 − r0 targets the centre of the target interval, leading to a reward of 10.
Here again, πtheorem1 maximises the expected value of r1.

d) When none of the three previous conditions is satisfied, a is not satisfied and so
x1 = x0, we need to consider two cases: (a0 − x0) ≥ 0 and (a0 − x0) < 0. Let us
first start with (a0−x0) ≥ 0. In such a context, α ∈ {a0−x0 + r0; a0−x0− r0} =
{a0 − x0 − |a0 − x0 − α|, a0 − x0 + |a0 − x0 − α|} and where:

1) P (α = a0 − x0 − |a0 − x0 − α||x0, a0, r0, x1) = 0.5

2) P (α = a0 − x0 + |a0 − x0 − α||x0, a0, r0, x1) = 0.5 .

Let us now determine the action a1 that maximises r̂1, the expected value of r1

according to P (α|x0, a0, r0, x1). Five cases, represented on Figure 1, have to be
considered:

1) a1 < a0 − |a0 − x0 − α| − 1. Here r̂1 = a1 − a0 and the maximum of r̂1 is
equal to −|a0 − x0 − α| − 1.

2) a1 ∈ [a0− |a0− x0−α| − 1, a0− |a0− x0−α|+ 1]. Here we have r̂1 = 1
2 (10 +

a0−|a0−x0−α|−a1) whose maximum over the interval is 5.5−|a0−x0−α|
which is reached for a1 = a0 + |a0 − x0 − α| − 1.

3) a1 ∈ [a0−|a0−x0−α|+1, a0+|a0−x0−α|−1]. In this case r̂1 = −|a0−x0−α|
and is independent from a1.

4) a1 ∈ [a0 + |a0 − x0 − α| − 1, a0 + |a0 − x0 − α| + 1]. The expected reward
is r̂1 = 1

2 (10 + a0 − |a0 − x0 − α| − a1) whose maximum over the interval is
5.5− |a0 − x0 − α| which is reached for a1 = a0 + |a0 − x0 − α|+ 1.

5) a1 > a0 + |a0 − x0 − α|+ 1. In this case the expected reward is r̂1 = a0 − a1

and the maximum of r̂1 is equal to −|a0 − x0 − α| − 1.

a0

x0

|r0||r0|

α

1 2 3 4 5

Fig 1. Graphical representation of the 5 different cases when playing a1.

From 1), 2), 3), 4) and 5) one can see that, given the conditions considered here, an
optimal policy can either play a1 = a0+|a0−x0−α|−1 or a1 = a0−|a0−x0−α|+1.
In the following we will fix a1 to a0 + |a0 − x0 − α|+ 1 when a0 − x0 ≥ 0. Let us
also observe that the expected value of r1 is equal to 5.5− |a0 − x0 − α|. Up to
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now in this item d), we have only considered the case where (a0 − x0) > 0. When
(a0 − x0) ≤ 0, using the same reasoning we reach the exact same expression for
the optimal action to be played and for the maximum expected return of r1. This
is due to the symmetry that exists between both cases. Since πtheorem1 plays the
action a1 = a0 + r0 + 1 = a0 − |a0 − x0 − α| + 1 in the case d) at time step 1,
it is straightforward to conclude that, in this case, it also plays an action that
maximises the expected value of r1.

Now that the first condition for πtheorem1 to maximise expression (13) has been
proved, let us turn our attention to the second one. To this end, we will compute for
each x0 ∈ X , the action a0 ∈ A that maximises:

E
α∼Uα

x1∼PM(α)(x0,a0)

(r0 + γ ∗ V1(x0, a0, r0, x1)) (16)

and show that this action coincide with the action taken by πtheorem1 for time step
t = 0. First let us observe that for this optimisation problem, one can reduce the search
space A to [x0 − αmax + 1, x0 + αmax − 1] ⊂ A. Indeed, an action a0 that does not
belong to this latter interval would not give more information about α than playing
a0 = x0 −αmax + 1 or x0 +αmax − 1 and lead to a worse expected r0. This reduction of
the search space will be exploited in the developments that follow.

However, we should first remember that Uα = U[−αmax, αmax] and that the function
V1(x0, a0, r0, x1) can be written as follows:

1. if r0 = 10, V1 is equal to Rmax = 10

2. else if |r0| > αmax − (a0 − x0) ∧ a0 − x0 > 0 and r0 6= 10, then V1 is equal to
Rmax = 10

3. else if |r0| > αmax − (x0 − a0) ∧ a0 − x0 < 0 and r0 6= 10, then V1 is equal to
Rmax = 10

4. and otherwise V1 is equal to 5.5− |a0 − x0 − α|.

We note that the value of V1(x0, a0, r0, x1) does not depend on the state x1, which allows
us to rewrite expression (16) as follows:

E
α∼Uα

(r0 + γ ∗ V1(x0, a0, r0, x1)) (17)

and since the expectation is a linear operator:

(17) = E
α∼Uα

(r0) + γ ∗ E
α∼Uα

(V1(x0, a0, r0, x1)) . (18)

Let us now focus on the second term of this sum:

E
α∼Uα

(V1(x0, a0, r0, x1)) . (19)

We note that when a0 − x0 ≥ 0 the function V1 can be rewritten under the following
form:
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1. if α ∈ [−αmax, 2 ∗ (a0 − x0)− αmax[, V1 is equal to 10

2. else if α ∈ [2 ∗ (a0 − x0)− αmax, a0 − x0 − 1], v1 is equal to 5.5 + α− (a0 − x0)

3. else if α ∈ [a0 − x0 − 1, a0 − x0 + 1], V1 is equal to 10

4. else if α ∈]a0 − x0 + 1, αmax], V1 is equal to 5.5− α+ (a0 − x0).

From here, we can compute the value of expression (19) when a0 − x0 ≥ 0. We note
that due to the symmetry that exists between the case a0 − x0 ≥ 0 and a0 − x0 ≤ 0,
expression (19) will have the same value for both cases. Since we have:

(19) =

∫ ∞
−∞

V1 ∗ pα ∗ dα

where pα is the probability density function of α, we can write:

(19) =

∫ αmax

−αmax
V1 ∗

1

2 ∗ αmax
dα

=

∫ 2∗(a0−x0)−αmax

−αmax

10

2 ∗ αmax
dα+

∫ a0−x0−1

2∗(a0−x0)−αmax

5.5 + α− (a0 − x0)

2 ∗ αmax
dα

+

∫ a0−x0+1

a0−x0−1

10

2 ∗ αmax
dα+

∫ αmax

a0−x0+1

5.5− α+ (a0 − x0)

2 ∗ αmax
dα .

And thus, by computing the integrals, we have:

E
α∼Uα

(V1) = − 1

2 ∗ αmax
(a0 − x0)2 +

1

αmax
(αmax + 4.5) ∗ (a0 − x0)

+
1

αmax
(5 + 5.5 ∗ αmax −

α2
max

2
) .

Let us now analyse the first term of the sum in equation (18), namely E
α∼Uα

(r0).

We have that:

E
α∼Uα

(r0) =

∫ ∞
−∞

(r0|x0, a0, α) ∗ pα ∗ dα

which can be rewritten as:

E
α∼Uα

(r0) =

∫ αmax

−αmax
(r0|x0, a0, α) ∗ 1

2 ∗ αmax
dα .

Due to the reduction of the search space, we can assume that a0 belongs to [x0 −
αmax + 1, x0 + αmax − 1], we can write:∫ αmax

−αmax
(r0|x0, a0, α) ∗ 1

2 ∗ αmax
dα =

∫ a0−x0−1

−αmax

α− (a0 − x0)

2 ∗ αmax
dα

+

∫ a0−x0+1

a0−x0−1

10

2 ∗ αmax
dα+

∫ αmax

a0−x0+1

(a0 − x0)− α
2 ∗ αmax

dα .
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Given that Rmax = 10, we have:

E
α∼Uα

(r0) =
−(a0 − x0)2 + 21− α2

max

2 ∗ αmax

and therefore:

(18) = − 1 + γ

2 ∗ αmax
∗ (a0 − x0)2 +

γ

αmax
(αmax + 4.5) ∗ (a0 − x0)

+
1

2 ∗ αmax
(21− α2

max + γ ∗ (10 + 11 ∗ αmax − α2
max)) .

To find the action a0 that maximises (16), one can differentiate (18) with respect to
a0:

d(18)

d(a0)
= − 1

αmax
∗ (1 + γ)(a0 − x0) +

γ

αmax
(αmax + 4.5) .

This derivative has a single zero value equal to:

a0 =
γ ∗ (αmax + 4.5)

1 + γ
+ x0 .

It can be easily checked that it corresponds to a maximum of expression (16) and since
it also belongs to the reduced search space [x0 − αmax + 1, x0 + αmax − 1], it is indeed
the solution to our optimisation problem. Since πtheorem1 plays this action at time t = 0,
Part 1 of this proof is now fully completed.

. Part 2. Let us now prove that the policy π∗theorem1 generates for every t ≥ 2 rewards
equal to Rmax = 10. We will analyse three different cases, corresponding to the three
cases a), b) and c) of policy πtheorem1 for time step t ≥ 2.

a) If r0 = 10, we are in a context where a0 belong to the target interval. It is
straightforward to see that, by playing at = xt + a0 − x0, the action played by
πtheorem1 in this case, we will get a reward rt equal to 10.

b) If r1 = 10 and r0 6= 10, one can easily see that playing action at = xt + a1 − x1,
the action played by πtheorem1, will always generate rewards equal to 10.

c) If r0 6= 10 and r1 6= 10, it is possible to deduce from the first action a0 that the
MDP played corresponds necessarily to one of these two values for α: {a0 − x0 +
r0; a0 − x0 − r0}. Similarly, from the second action played, one knows that α
must also stand in {a1 − x1 + r1; a1 − x1 − r1}. It can be proved that because
a0 6= a1 (a property of our policy πtheorem1), the two sets have only one element
in common. Indeed if these two sets had all their elements in common, either this
pair of equalities would be valid:

a0 − x0 + r0 = a1 − x1 + r1

a0 − x0 − r0 = a1 − x1 − r1
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or this pair of equalities would be valid:

a0 − x0 + r0 = a1 − x1 − r1

a0 − x0 − r0 = a1 − x1 + r1 .

By summing member by member the two equations of the first pair, we have:

a0 − x0 = a1 − x1 .

Taking into account that x0 = x1 because none of the two actions yielded a positive
reward, it implies that a0 = a1, which results in a contradiction. It can be shown
in a similar way that another contradiction appears with the second pair. As a
result the intersection of these two sets is unique and equal to α. From here, it is
straightforward to see that in this case c), the policy πtheorem1 will always generate
rewards equal to Rmax.

From Theorem 1, one can easily prove the following theorem.

Theorem 2 The value of expected return of a Bayes optimal policy for benchmark 1 is

equal to 3∗γ2∗(αmax+4.5)2

2∗αmax∗(1+γ) +
21+α2

max+γ∗(10+11∗αmax−α2
max)

2∗αmax + γ2

1−γ ∗ 10.

Proof The expected return of a Bayes optimal policy can be written as follows:

E
M∼D
x0∼Px0

a·∼π∗bayes(
.)

x·∼PM(.,.)

1∑
t=0

γt ∗ rt + E
M∼D
x0∼Px0

a·∼π∗bayes(
.)

x·∼PM(.,.)

∞∑
t=2

γt ∗ rt .

From the proof of Theorem 1, it is easy to see that:

1. E
M∼D
x0∼Px0

a·∼π∗bayes(
.)

x·∼PM(.,.)

∑1
t=0 γ

t ∗ rt = 3∗γ2∗(αmax+4.5)2

2∗αmax∗(1+γ) +
21+α2

max+γ∗(10+11∗αmax−α2
max)

2∗αmax

2. E
M∼D
x0∼Px0

a·∼π∗bayes(
.)

x·∼PM(.,.)

∑∞
t=2 γ

t ∗ rt = γ2

1−γ 10

which proves Theorem 2.
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