Abstract :
[en] In this chapter, we introduce the reader to a popular family of machine learning algorithms, called decision trees. We then review several approaches based on decision trees that have been developed for the inference of gene regulatory networks (GRNs). Decision trees have indeed several nice properties that make them well-suited for tackling this problem: they are able to detect multivariate interacting effects between variables, are non-parametric, have good scalability, and have very few parameters. In particular, we describe in detail the GENIE3 algorithm, a state-of-the-art method for GRN inference.
Scopus citations®
without self-citations
19