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Abstract In this chapter, we introduce the reader to a popular family of machine
learning algorithms, called decision trees. We then review several approaches based
on decision trees that have been developed for the inference of gene regulatory net-
works (GRNs). Decision trees have indeed several nice properties that make them
well-suited for tackling this problem: they are able to detect multivariate interact-
ing effects between variables, are non-parametric, have good scalability, and have
very few parameters. In particular, we describe in detail the GENIE3 algorithm, a
state-of-the-art method for GRN inference.
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1 Introduction

This chapter focuses on a popular family of machine learning algorithms, called de-
cision trees. The goal of tree-based algorithms is to learn a model, in the form of a
decision tree or an ensemble of decision trees, that is able to predict the value of an
output variable given the values of some input variables. Tree-based methods have
been widely used to solve diverse problems in computational biology, such as DNA
sequence annotation or biomarker discovery (see [1–3] for reviews). In particular,
several approaches based on decision trees have been developed for the inference of
gene regulatory networks (GRNs) from expression data. Decision trees have indeed
several advantages that make them attractive for tackling this problem. First, they are
potentially able to detect multivariate interacting effects between variables, which
make them well suited for modelling gene regulation, as the regulation of the expres-
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sion of one gene is expected to be combinatorial, i.e. to involve several regulators.
Tree-based methods have also the advantage to be non-parametric. They thus do
not make any assumption about the nature of the interactions between the variables
(such as linearity or Gaussianity). As their computational complexity is typically
at most linear in the number of features, they can deal with high-dimensionality, a
characteristic usually encountered in gene expression datasets. They are also flexi-
ble as they can handle both continuous and discrete variables. With respect to other
supervised learning methods such as support vector machines or artificial neural
networks, tree-based methods have very few parameters, which make them easy to
use, even for non-specialists. See also Chapter 9 for another usage of tree-based
methods in GRN inference.

One of the most widely used tree-based methods for GRN inference is GENIE3
[4]. This method exploits variable importance scores derived from ensembles of re-
gression trees to identify the regulators of each target gene. GENIE3 was the best
performer of the DREAM4 Multifactorial Network challenge and the DREAM5
Network Inference challenge [5], and is currently one of the state-of-the-art ap-
proaches for GRN inference. This method has also been evaluated and compared
to other methods in numerous independent studies (e.g. [6–13]), usually achieving
competitive results, and has often been used (either alone or in combination with
other inference methods) to reconstruct real networks in various organisms such
as bacteria [14–16], plants [17–19], drosophila [20], mouse [21, 22], and human
[23, 24].

The chapter is structured as follows. Section 2 introduces general notions of
supervised learning, while Section 3 specifically focuses on regression tree-based
approaches. Section 4 presents several tree-based methods for GRN inference. In
particular, the GENIE3 algorithm is described in detail. Finally, Section 5 discusses
potential improvements of GENIE3.

2 Supervised learning

Machine learning is a branch of artificial intelligence whose goal is to extract knowl-
edge from observed data. In particular, supervised learning is the machine learning
task of inferring a model f that predicts the value of an output variable Y , given the
values of m inputs X1,X2, . . . ,Xm. The model f is learned from N instances (also
called samples or observations) of input-output pairs, drawn from the (usually un-
known) joint distribution p(X1,X2, . . . ,Xm,Y ) of the variables:

LS = {(xk,yk)}N
k=1. (1)

The set of instances is called learning sample. Depending on whether the output
is discrete or continuous, the learning problem is a classification or a regression
problem respectively. In this chapter, we will focus on regression problems.
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Let L be a loss function that, given an instance (x,y), measures the difference
between the value f (x) predicted by the model f from the input x, and the observed
value y of the target variable. For a regression problem, a widely used loss function
is the squared error:

L(y, f (x)) = (y− f (x))2. (2)

The goal of supervised learning is to find, from a learning sample LS, a model f
that minimises the generalisation error, i.e. the expected value of the loss func-
tion, taken over different instances randomly drawn from the joint distribution
p(X1,X2, . . . ,Xm,Y ):

Ex,y [L(y, f (x))] . (3)

Since the joint distribution p(X1,X2, . . . ,Xm,Y ) is usually unknown, supervised
learning algorithms typically work by minimising the training error, which is the
average prediction error of the model over the instances of the learning sample:

1
N

N

∑
k=1

L(yk, f (xk)). (4)

As the training error is calculated on the same samples that were used to learn the
predictive model, it typically underestimates the generalisation error, as shown in
Figure 1. The training error typically decreases when the complexity of the model is
increased, i.e. when the model is allowed to fit more closely the training data. If the
complexity is too high, the model may also fit the noise contained in the data and
thus will have a poor generalisation performance. In this case, we say that the model
overfits the training data. On the other hand, if the model has a too low complexity,
it underfits the data and will also have a high generalisation error. Hence there is an
optimal model complexity that leads to the minimal generalisation error.

For more details, the reader is invited to refer to general books about machine
learning [25, 26].

3 Regression trees

A popular approach to the regression problem is the regression tree [27]. Figure 2
shows the structure of a tree. In this example, there are two input variables X1 and
X2, which are both continuous. Each interior node of the tree contains a test of the
type “Xi < c”, where Xi is one of the input variables and c a threshold value, and
each terminal node (or leaf) contains a predicted value for the output variable. Given
a new sample, for which we have observed values of the input variables, a prediction
for the output is obtained by propagating the sample down the tree, until it reaches
a leaf. The predicted output value is then the value at that leaf.



4 Vân Anh Huynh-Thu and Pierre Geurts

Complexity

P
re

d
ic

ti
o
n
 e

rr
o
r

OverfittingUnderfitting

Error on independent

       test sample

    Error on 

training sample

Fig. 1 Overfitting and underfitting. The blue (resp. orange) curve plots, for varying levels of com-
plexity of the predictive model, the average value of the loss function over the instances of the
learning sample (resp. of an independent test sample). Overfitting occurs when the model is too
complex and underfitting occurs when the model is not complex enough.

Fig. 2 Example of a regres-
sion tree. Each interior node
of a tree is a test on one input
variable and each terminal
node contains a predicted
value for the output variable.
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3.1 Learning a regression tree

Using a learning sample LS, the goal of a tree-based method is to identify the tree
that minimises the training error in Equation (4). A brute-force approach would con-
sist in enumerating all the possible trees. This approach is however intractable and
for this reason tree-based methods are rather based on greedy algorithms. A regres-
sion tree is typically constructed top-down, starting from a root node corresponding
to the whole learning sample. The idea is then to recursively split the learning sam-



Unsupervised GRN inference with decision trees and Random forests 5

ple with binary tests on the values of the input variables, trying to reduce as much
as possible the variance of the output variable in the resulting subsets of samples.
At each interior node N , the best test “Xi < c” is chosen, i.e. the variable Xi and the
threshold value c that maximise:

I(N ) = #S.VarY (S)−#St .VarY (St)−#S f .VarY (S f ), (5)

where S denotes the set of samples of LS that reach node N , St (resp. S f ) denotes
its subset for which the test is true (resp. false), # denotes the cardinality of a set of
samples, and VarY (·) is the variance of the output in a subsample. The samples of S
are then split into two subsamples following the optimal test and the same procedure
is applied on each of these subsamples. A node becomes a terminal node if the vari-
ance of the output variable, computed over the samples reaching that node, is equal
to zero. Each terminal node contains a predicted value for the output, corresponding
to the mean value of the output taken over the samples that reach that node.

However, a fully grown tree typically overfits the training data. Overfitting can
be avoided by pruning the tree, i.e. by removing some of its subtrees. Two types
of pruning exist: pre-pruning and post-pruning. In a pre-pruning procedure, a node
becomes a terminal node instead of a test node if it meets a given criterion, such as:

• The number of samples reaching the node is below a threshold Nmin;
• The variance of the output variable, over the samples reaching the node, is below

a threshold Varmin;
• The optimal test is not statistically significant, according to some statistical test.

On the other side, the post-pruning procedure consists in fully developing a first tree
T1 from the learning sample and then computing a sequence of trees {T2,T3, . . .}
such that Ti is a pruned version of Ti−1. The prediction error of each tree is then
calculated on an independent set of samples and the tree that leads to the lowest
prediction error is selected. The main drawback of the post-pruning procedure is that
an independent set of samples is needed, while the main drawback of pre-pruning is
that the optimal value of the parameter related to the chosen stop-splitting criterion
(Nmin, Varmin, the significance level) is dependent on the considered problem.

Besides pruning, ensemble methods constitute another way of avoiding overfit-
ting. These methods are described in the following section.

3.2 Ensemble methods

Single regression trees are usually very much improved by ensemble methods,
which average the predictions of several trees. The goal of ensemble methods is
to use diversified models to reduce the overfitting of a learning algorithm. In the
case of a tree, the overfitting comes mostly from the choices, made at each split
node, of the input variable and the threshold value used for the test. Amongst the
most widely used tree-based ensemble methods are methods that rely on randomi-
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sation to generate diversity among the different models. These methods are Bagging
[28], Random forest [29], and Extra-Trees [30].

Bagging

In the Bagging (for “Bootstrap AGGregatING”) algorithm, each tree of the ensem-
ble is built from a bootstrap replica, i.e. a set of samples obtained by N random
samplings with replacement in the original learning sample. The choices of the
variable and of the threshold at each test node are thus implicitly randomised via
the bootstrap sampling.

Random forest

This method adds an extra level of randomisation compared to the Bagging. In a
Random forest ensemble, each tree is built from a bootstrap sample of the original
learning sample and at each test node, K variables are selected at random (with-
out replacement) among all the input variables before determining the best split.
When K is set to the total number of input variables, the Random forest algorithm
is equivalent to Bagging.

Extra-Trees

In the Extra-Trees (for “EXTremely RAndomised Trees”) method, each tree is built
from the original learning sample but at each test node, the best split is determined
among K random splits, each determined by randomly selecting one input variable
(without replacement) and a threshold value (chosen uniformly between the mini-
mum and maximum values of the input variable in the local subset of samples).

3.3 Parameters

Tree-based (ensemble) methods have several parameters whose values must be set
by the user:

• The parameters related to the chosen stop-splitting criterion, such as Nmin, the
minimal number of samples that a leaf node must contain. Increasing the value
of Nmin results in smaller trees and hence models with a higher bias (i.e. more
prone to underfitting) and a lower variance (i.e. less prone to overfitting). Its
optimal value depends on the level of noise contained in the learning sample.
The noisier the data, the higher the optimal value of Nmin. Usually, Nmin is fixed
to 1 for ensemble methods, so that each tree of the ensemble is fully developed.
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• K, the number of input variables that are randomly chosen at each node of a tree.
This parameter thus determines the level of randomisation of the trees. A smaller
value of K results in more randomised trees. The optimal value of K is problem-
dependent, but K =

√
m and K = m, where m is the number of input variables,

are usually good default values [30].
• T , the number of trees in an ensemble. It can be shown that the higher the number

of trees, the lower the generalisation error [29, 3]. Therefore, the chosen value of
T is a compromise between model accuracy and computing times.

3.4 Variable importance measures

One interesting characteristic of tree-based methods is the possibility to compute
from a tree an importance score for each input variable. This score measures the
relevance of a variable for the prediction of the output. In the case of regression, an
importance measure that can be used is based on the reduction of the variance of
the output at each test node N , i.e. I(N ) as defined in Equation (5). For a single
tree, the overall importance wi of one variable Xi is then computed by summing the
I(N ) values of all the tree nodes where Xi is used to split:

wi =
p

∑
k=1

I(Nk)1Nk(Xi), (6)

where p is the number of test nodes in the tree and Nk denotes the k-th test node.
1Nk(Xi) is a function that is equal to one if Xi is the variable selected at node Nk and
zero otherwise. The features that are not selected at all thus obtain an importance
value of zero and those that are selected close to the root node of the tree typically
obtain high scores. Variable importance measures can be easily extended to ensem-
bles, simply by averaging importance scores over all the trees of the ensemble. The
resulting importance measure is then even more reliable because of the variance
reduction effect resulting from this averaging.

In the context of the Random forest method, an alternative procedure was pro-
posed to compute the importance of a variable [29]. For each tree that was learned,
this procedure consists in computing the prediction accuracy of the tree on the out-
of-bag samples (i.e. the training instances that were not present in the bootstrap
sample used to build the tree), before and after randomly permuting the values of
the corresponding variable in these samples. The reduction of the tree accuracy that
is obtained after the permutation is then computed, and the importance of the vari-
able is given by the average accuracy reduction over all the trees of the ensemble.
While this procedure has some advantages with respect to the variance reduction-
based measure [31], it gives in most practical applications very similar results while
being much more computationally demanding. Furthermore, it does not extend to
methods that do not consider bootstrap sampling, like the Extra-Trees.
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4 Tree-based approaches for gene network inference

This section presents several approaches based on decision tree algorithms, that
were developed for the unsupervised inference of GRNs. In particular, we start by
describing in detail the state-of-the-art GENIE3 approach.

4.1 GENIE3

GENIE3, for “GEne Network Inference with Ensemble of trees”, uses ensembles
of regression trees to infer GRNs from steady-state expression data. (Many people
think that the digit 3 in the acronym GENIE3 indicates a third version of the algo-
rithm. This is however not the case. The presence of the digit 3 is actually due to
the fact that the word “three” sounds exactly like the word “tree”, when pronounced
with a (strong) French accent.)

In what follows, we define an expression dataset from which to infer the network
as a collection of N measurements:

D = {x1,x2, . . . ,xN}, (7)

where xk ∈RG,k = 1, . . . ,N is the vector of expression values of G genes in the k-th
experiment:

xk = (x1
k ,x

2
k , . . . ,x

G
k )
>.

The goal of GENIE3 is to exploit the expression dataset D to assign weights
wi, j > 0,(i, j = 1, . . . ,G) to putative regulatory links from any gene gi to any gene
g j, with the aim of yielding larger values for weights that correspond to actual regu-
latory interactions. GENIE3 returns directed and unsigned edges, which means that
wi, j can take a different value than w j,i, and when gi is connected to g j, the former
can be either an activator or a repressor of the latter.

To solve the network inference problem, GENIE3 decomposes the problem of
recovering a network of G genes into G different subproblems, where each of these
subproblems consists in identifying the regulators of one of the genes of the net-
work. The method makes the assumption that the expression of each gene in a given
condition is a function of the expression of the other genes in the same condition
(plus some random noise). Denoting by x− j

k the vector containing the expression
values in the k-th experiment of all the genes except gene g j:

x− j
k = (x1

k , . . . ,x
j−1
k ,x j+1

k , . . . ,xG
k )
>,

we can write:
x j

k = f j(x− j
k )+ εk, ∀k, (8)

where εk is a random noise with zero mean (conditionally to x− j
k ). GENIE3 further

makes the assumption that the function f j only exploits the expression in x− j of the
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genes that are direct regulators of g j, i.e. genes that are directly connected to g j in
the targeted network. Recovering the regulatory links pointing to the target gene g j
thus amounts to finding those genes whose expression is predictive of the expression
of g j. In machine learning terminology, this can be considered a feature selection
problem (in regression) for which many solutions can be found in the literature. The
solution that is used by GENIE3 exploits the variable importance scores derived
from tree ensemble models.

The GENIE3 procedure is illustrated in Figure 3 and works as follows:

• For j = 1 to G:

– Generate the learning sample of input-output pairs for gene g j:

LS j = {(x− j
k ,x j

k),k = 1, . . . ,N}. (9)

– Learn an ensemble of trees from LS j using the Random forest or Extra-Trees
algorithm.

– From the learned tree model, compute variable importance scores wi, j for all
the genes gi (except g j itself). These importance scores are computed as sums
of variance reductions (Equation (6)).

• Use wi, j as weight for the regulatory link directed from gi to g j.

Note that in GENIE3, it is possible – and even advisable – to restrict the set of can-
didate regulators to a subset of the genes only (rather than using all the G genes as
candidate regulators). This can be useful when we know which genes are transcrip-
tion factors for example. In that case, the learning sample LS j is constructed with
only those transcription factors as input genes.

4.1.1 Output normalisation

In the GENIE3 procedure, each tree-based model yields a separate ranking of the
genes as potential regulators of a target gene g j, derived from importance scores
wi, j. It can be shown that the sum of the importance scores of all the input variables
for a tree is equal to the total variance of the output variable explained by the tree,
which in the case of unpruned trees (as they are in the case of tree ensembles) is
usually very close to the initial total variance of the output:

∑
i 6= j

wi, j ≈ NVar j(LS′ j), (10)

where LS′ j is the learning sample from which the tree was built (i.e. LS j in the
case of the Extra-Trees method and a bootstrap sample in the case of the Bagging
and Random forest methods) and Var j(LS′ j) is the variance of the target gene g j
estimated in the corresponding learning sample. As a consequence, if the regulatory
links are simply ranked according to the weights wi, j, this is likely to introduce a
bias where some putative regulatory links will have a high weight simply because
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Fig. 3 GENIE3 procedure. For each gene g j, j = 1, . . . ,G, a learning sample LS j is generated with
the expression levels of g j as output values and the expression levels of all the other genes as input
values. An ensemble of trees is learned from LS j and a variable importance score wi, j is computed
for each input gene gi. The score wi, j is then used as weight for the regulatory link directed from
gi to g j . Figure reproduced from [4].

they are directed towards highly variable genes. To avoid this bias, the expression of
the target gene g j is normalised to have a unit variance in the learning sample LS j,
before applying the tree-based ensemble method:

x j← x j

σ j , ∀ j, (11)

where x j ∈ RN is the vector of expression levels of g j in the N experiments and σ j

denotes its standard deviation. This normalisation indeed implies that the different
weights inferred from different models predicting the different gene expressions are
comparable.

4.1.2 Software availability

Python, MATLAB and R implementations of GENIE3, as well as tutorials explain-
ing how to run them, are available from:
http://www.montefiore.ulg.ac.be/˜huynh-thu/GENIE3.html

4.1.3 Computational complexity

The computational complexity of the Random forest and Extra-Trees algorithms is
on the order of O(T KN logN), where T is the number of trees, N is the learning
sample size, and K is the number of randomly selected genes at each node of a tree.
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GENIE3’s complexity is thus on the order of O(GT KN logN) since it requires to
build an ensemble of trees for each of the G genes. The complexity of the whole
procedure is thus log linear with respect to the number of measurements and, at
worst, quadratic with respect to the number of genes (when K = G−1).

To give an idea of computing times, Table 1 shows the times needed for GENIE3
to infer one network of the DREAM4 Multifactorial challenge (100 experiments and
100 genes) and the E. coli network of the DREAM5 challenge (805 experiments and
4511 genes, among which 334 known transcription factors). In each case, GENIE3
was run with Random forest, T = 1000 trees per ensemble and K =

√
nT F , where

nT F is the number of candidate regulators (i.e. nT F = 100 for DREAM4 and nT F =
334 for E. coli). These computing times were measured on a 16GB RAM, Intel
Xeon E5520 2.27 GHz computer.

Table 1 Running times of the different GENIE3 implementations

Network Python MATLAB R

DREAM4 (N = 100,G = 100,nT F = 100) 130 sec 65 sec 50 sec
E. coli (N = 805,G = 4511,nT F = 334) 20 hours 20 hours 14 hours

N: number of samples, G: number of genes, nT F : number of transcription factors.

Note that if needed, the GENIE3 algorithm can be easily parallelised as the G
feature selection problems, as well as the different trees in an ensemble, are inde-
pendent of each other.

4.1.4 Parameter analysis

Figure 4 shows the performances and running times of GENIE3, for two networks
of the DREAM5 challenge (an artificial In silico network and a real E. coli net-
work), when varying the values of the different parameters of GENIE3. The perfor-
mances were measured using the area under the precision-recall curve (AUPR) met-
ric, which assesses the quality of the ranking of interactions returned by a method. A
perfect ranking, where all the true interactions are ranked at the top, yields an AUPR
equal to 1, while a random ranking returns an AUPR equal to the proportion of true
interactions among all the possible interactions (which is typically very small, since
regulatory networks are very sparse).

Clearly, the parameter with the highest impact is K, i.e. the number of randomly
selected candidate regulators at each tree node. Its optimal value is very dataset-
dependent: increasing the value of K improves the predictions (i.e. the AUPR is
increased) for the In silico network, while the opposite is observed on the E. coli
network. This difference between the two networks can probably be explained by
the fact that the E. coli data contains more noise than the artificial data. We thus
checked how the performance of GENIE3 varies when adding further noise to the
artificial data, in the form of a Gaussian noise∼N (0,0.25) or N (0,0.5) (Table 2).
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Fig. 4 AUPRs (blue circles) and running times (orange triangles) of GENIE3, when varying the
values of the parameters K (number of randomly chosen candidate regulators at each split node of a
tree), nmin (minimum number of samples at a leaf) and T (number of trees per ensemble), and when
using either Random forest (RF) or Extra-Trees (ET) as tree-based algorithm. When varying the
values of one parameter, the values of the remaining parameters were set to their default values.
The default values are: K =

√
nT F , where nT F is the number of transcription factors, nmin = 1,

T = 1000 and the tree-based method is the Random forest algorithm. The results shown in this
figure were obtained by using the R implementation of GENIE3. In silico dataset: 805 samples,
1643 genes, 195 transcription factors. E. coli dataset: 805 samples, 4511 genes, 334 transcription
factors.

As expected, the predictions are worse when noise is added, for all the values of K.
In the presence of a high amount of noise, increasing K from nT F

2 to nT F results in
a (slightly) lower AUPR, a result closer to what is observed for the E. coli network.
This could be explained by the fact that decreasing the value of K results in predic-
tive tree-based models that overfit less the data and that are therefore more robust to
the noise.

The other parameters of GENIE3 have only a minor impact on the performances
(Figure 4). In terms of AUPR, the best value of nmin, i.e. the minimum number of
samples at a leaf, is 1. Increasing nmin allows to save some computational time, at
only a small cost in terms of performances. Regarding the number T of trees per
ensemble, we observe that 500 trees already allows to obtain good performances.
Further increasing T only results in more computational time, without improving
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Table 2 AUPRs of GENIE3 for the DREAM5 In silico network, when noise is added to the data

Noise
N (0,0.25)

Noise
N (0,0.5)

K =
√

nT F 0.1741 0.0435
K = nT F/5 0.1893 0.0436
K = nT F/2 0.2004 0.0435
K = nT F 0.2059 0.0426
Random 0.0125 0.0125

the AUPR. Finally, the Extra-Trees algorithm has slightly less good performances
than Random forest, but is more computationally efficient.

4.2 Extensions of GENIE3

Several methods for GRN inference building on GENIE3 have been developed. The
purpose of this section is to give a brief overview of these methods. For more details,
the reader can refer to the original articles (referenced in the following subsections).

4.2.1 Analysis of time series data

dynGENIE3 (for “dynamical GENIE3”) is a variant of GENIE3 that was developed
for the analysis of time series of expression data [32]. dynGENIE3 assumes that the
expression level x j of gene g j is modelled through the following ordinary differential
equation (ODE):

dx j(t)
dt

=−α jx j(t)+ f j(x(t)), (12)

where x(t) is the vector containing the expressions of all the G genes at time t and
α j is a parameter specifying the decay rate of x j. In this ODE, it is assumed that
the transcription rate of x j is a (potentially non-linear) function f j of the expression
levels of the G genes. Like in GENIE3, this function f j is learned in the form of
an ensemble of regression trees and the regulators of g j are then identified by com-
puting the variable importance scores derived from the tree model. dynGENIE3 is
therefore a semi-parametric approach, as the temporal evolution of each gene ex-
pression is modelled with a formal ODE while the transcription function in each
ODE is learned in the form of a non-parametric (tree-based) model.

Given the observation time points t1, t2, . . . , tT , the ODE (12) has the following
finite approximation:

x j(tk+1)−x j(tk)
tk+1−tk

+α jx j(tk) = f j(x(tk)),
k = 1, . . . ,T −1,

(13)
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and the function f j can thus be learned using the following learning sample:

LS j = {(x(tk),
x j(tk+1)− x j(tk)

tk+1− tk
+α jx j(tk)),k = 1, . . . ,T −1}. (14)

The gene decay rates α j in LS j are parameters that are fixed by the user. Their
values may be retrieved from the literature, since there exist many studies that ex-
perimentally measure the mRNA decay rates in different organisms. However, when
such information is not available, a data-driven approach can be used to estimate the
α j value directly from the observed expressions x j of g j. For example, a rough es-
timate of α j can be obtained by assuming an exponential decay e−α jt between the
highest and lowest values of x j.

4.2.2 Analysis of genotype data

Two extensions of GENIE3 were proposed for the joint analysis of expression and
genotype data [33]. It is assumed that we have at our disposal a dataset containing
the expression levels of G genes measured in N individuals, as well as the genotype
value of one genetic marker for each of these genes in the same N individuals:

D = {(x1,m1),(x2,m2), . . . ,(xN ,mN)}, (15)

where xk ∈ RG and mk ∈ {0,1}G,k = 1, . . . ,N are respectively the vectors of ex-
pression levels and genotype values of the G genes in the k-th individual:{

xk = (x1
k ,x

2
k , . . . ,x

G
k )
>,

mk = (m1
k ,m

2
k , . . . ,m

G
k )
>.

(16)

Note that it is supposed that each genetic marker can have two possible genotype
values only (0 or 1), as it would be the case for homozygous individuals.

To exploit such data, the first procedure, called GENIE3-SG-joint, assumes that a
unique model f j explains the expression of a gene g j in a given individual, knowing
the expression levels and the genotype values of the different genes:

x j
k = f j(x− j

k ,mk)+ εk,∀k, (17)

where εk is a random noise. In the second procedure, called GENIE3-SG-sep, it is
assumed that two different models f x

j and f m
j can both explain the expression of g j,

either from the expression levels of the other genes, or from the genotype values:{
x j

k = f x
j (x
− j
k )+ εk,∀k,

x j
k = f m

j (mk)+ ε ′k,∀k.
(18)

The functions f e
j and f m

j are therefore respectively learned from two different learn-
ing samples. Both GENIE3-SG-joint and GENIE3-SG-sep learn the different func-
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tions f j as ensembles of trees and compute for each candidate regulator gi two scores
wx

i, j and wm
i, j, measuring respectively the importances of the expression and of the

marker of gi when predicting the expression of g j. These two scores are then aggre-
gated, either by a sum or a product, to obtain a single weight wi, j for the regulatory
link directed from gi to g j.

4.2.3 Analysis of single-cell data

GENIE3 is used as such in two frameworks that were developed for the inference of
GRNs from single-cell transcriptomic data.

The framework developed by Ocone et al. uses GENIE3 to obtain a prior GRN,
which is then refined using an ODE-based approach [34]. The whole procedure
allows to identify the GRN as well as the parameters of the ODEs that are used to
model the gene expression dynamics.

In the SCENIC framework [35], GENIE3 is used in a first step to identify co-
expression modules, i.e. groups of genes that are regulated by the same transcription
factor. In a second step, a motif enrichment analysis is performed for each module,
and only the modules such that the target genes show an enrichment of a motif of the
corresponding transcription factor are retained. The activity of each module in each
cell is then evaluated using the single-cell expression data and the activity levels of
the different modules are used to perform cell clustering.

4.2.4 Exploitation of prior knowledge

The iRafNet method [36] allows to take into account prior information that we have
about the network, in the form of prior weights associated with the different network
edges. In the original article introducing iRafNet, the prior weights are obtained
from diverse types of data, such as protein-protein interaction data or knockout data.
To exploit the prior weights, iRafNet uses the same framework as GENIE3, but
with a modified version of the Random forest algorithm. At each tree node, instead
of randomly sampling K input variables according to a uniform distribution, the
K variables are sampled with a bias that favours the variables with a higher prior
weight.

4.2.5 Inference of context-specific networks

Let us assume that we have different expression datasets respectively related to dif-
ferent contexts (e.g. different pathological conditions). One could then be interested
in identifying a GRN that is specific to each of these contexts. To achieve such goal,
one could apply a network inference algorithm like GENIE3 to each dataset. How-
ever, when the contexts are related (e.g. different subclasses of a cancer), one can
expect the different networks to have a lot of commonalities. In this case, approaches
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that jointly analyse the different datasets will potentially yield better performances,
as they will assign higher weights to regulatory links that are active in a higher
number of contexts. Many of such joint approaches are based on Gaussian graph-
ical models (see e.g. [37–39]). An approach based on trees, called JRF (for “Joint
Random Forest”) [40], has also been proposed. Given D datasets, JRF consists, for
each target gene, in simultaneously learning D tree models. When learning D regres-
sion trees in parallel, the idea is to select the same input variable at the same node
position in the D different trees. More specifically, for a given input variable gi, let
cd

i be the threshold value that yields the best split at test node N in the d-th tree
(d = 1, . . . ,D). cd

i is thus the threshold value that maximises the variance reduction
Id
i (N ), as defined in Equation (5), among all the possible threshold values for gi.

JRF then selects, at node N in all the D trees, the input variable gi∗ that maximises:

gi∗ = argmax
i

D

∑
d=1

Id
i (N )

Nd
, (19)

where Nd is the number of samples in the d-th dataset. The importance score of
a candidate regulator gi in the d-th context is then the sum of output variance re-
ductions (as defined in Equation (6)), computed by propagating the samples of the
d-th dataset in the d-th tree model. By selecting, for a given target gene, the same
candidate regulators in the D tree models, JRF enforces the similarity between the
inferred networks. However, since the importance score of gi in the d-th context is
computed by using the samples that are related to this context, JRF also allows to
identify regulatory links that are active in only one or a few contexts. Note that when
there is only one context, JRF is equivalent to GENIE3.

4.3 Other tree-based approaches

Besides GENIE3, other tree-based approaches have been proposed for the unsuper-
vised inference of GRNs, which use different types of trees in different frameworks.
In [41], networks are reconstructed by learning a single classification tree for each
target gene, predicting the state of the gene (up- or down-regulated) from the ex-
pression levels of the other genes. In [42], Segal et al. propose a method that par-
titions the genes into modules, such that genes in the same module have the same
regulators and the same regulatory model. The regulatory model of each module is
represented by one probabilistic regression tree (where each leaf is associated with
a probabilistic distribution of the output variable). Inspired by the work of Segal
al., the LeMoNe algorithm [43] also learns module networks, where the regulatory
model for each module is in the form of an ensemble of fuzzy decision trees. In [44]
M5’ model trees are used, i.e. regression trees with linear models at the leaves. In
[45], networks are reconstructed by fitting a dynamical model of the gene expres-
sions, where one of the terms of the model is learned in the form of an ensemble of
decision trees. Tree-based methods were also used to model expression data jointly
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with other types of data, such as motif counts in the promoter regions of the gene or
transcription factor-binding data [46–49]. Another example is [50], which extends
the module network procedure to exploit both expression and genotype data.

5 Discussion

In this chapter, we presented GENIE3 and other tree-based approaches, that were
developed for the inference of gene regulatory networks from expression data. The
main advantages of GENIE3 are its non-parametric nature, its ability to detect mul-
tivariate interacting effects between candidate regulators and the fact that it has very
few parameters. However, like any method, GENIE3 also has its own limitations
and could thus be improved along several directions, discussed below.

A first limitation of GENIE3 is that it provides a ranking of the putative reg-
ulatory links, rather than a network topology. Since tree-based importance scores
are not interpretable from a statistical point of view, choosing a threshold value to
distinguish present and absent edges is not a trivial task. Several methods were pro-
posed for addressing the problem of selecting, from tree-based importance scores,
the input variables that are relevant for output prediction [51, 52]. These methods
could in principle be applied in the context of GENIE3 in order to select the regu-
lators of each target gene. However, most of them are based on multiple – say 1000
– reruns of the tree-based algorithm. If one wishes to incorporate such feature se-
lection approaches into GENIE3, one would need to learn 1000×G ensembles of
trees, where G is the number of genes, which would be impractical for a large value
of G. Another property of these methods is that they are designed to identify the
maximal subset of relevant variables, i.e. all the variables that convey at least some
information about the output. For that reason, these methods are not appropriate for
the network inference problem. Even if there is no direct edge from gene gi to gene
g j in the true network, the expression of gi can still be predictive of the expression
of g j, through one or several other genes (e.g. gi regulates some gene gk, which
in turn regulates g j). In conclusion, each gene of the network is indirectly regu-
lated by (almost) all the other genes, but most of these indirect edges are considered
false positives since they are not part of the true network. To avoid the inclusion of
such indirect effects, one would need a feature selection method able to determine
a minimal subset of variables that convey all the information about an output (and
thus make all the other variables conditionally irrelevant). An optimal treatment of
this problem would probably require to adopt a more global approach that exploits
jointly the G individual rankings related to the different target genes respectively.

GENIE3 could also be improved on the way the variable importance scores are
normalised. Given the current normalisation (Equation (11)), the scores of all the pu-
tative edges directed towards a given target gene sum up to one. As a consequence,
the importance scores that are derived from different tree models are not entirely
comparable. For example, let us assume that gene g1 has a single regulator g2, and
that gene g3 has two regulators g4 and g5. With a sufficient amount of data, GENIE3
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will assign a score of 1 to the edge g2→ g1, but a score of only 0.5 to g4→ g3 and
g5→ g3. An optimal way of normalising the importance score is thus still needed at
this stage.

So far, GENIE3 has only been evaluated in an empirical way. It would however
be interesting to better characterise the method – in particular the tree-based im-
portance scores used within – from a theoretical point of view. This would actually
constitute an important contribution in the machine learning field, as there has been
very few works focusing on the theoretical analysis of the importance measures
derived from tree ensembles [53–55].

Despite the good scalability of GENIE3 with respect to some families of methods
(such as methods based on differential equations or Bayesian methods), a substantial
amount of time is still needed to reconstruct a large network (e.g. it takes 20 hours
to reconstruct the E. coli network from 805 samples, see Table 1). With the recent
developments in single-cell RNA-seq technologies, datasets with a size of the order
of 100K cells are becoming available. Speeding up the GENIE3 algorithm would be
necessary if one wishes to apply it on such large datasets.
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