Anbar, A. D., Duan, Y., Lyons, T. W., Arnold, G. L., Kendall, B., Creaser, R. A., … Buick, R. (2007). A whiff of oxygen before the great oxidation event? Science, 317, 1903–1906. https://doi.org/10.1126/science.1140325
Au Yang, D., Landais, G., Assayag, N., Widory, D., & Cartigny, P. (2016). Improved analysis of micro- and nanomole-scale sulfur multi-isotope compositions by gas source isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry, 30, 897–907. https://doi.org/10.1002/rcm.7513
Awramik, S. M., & Buchheim, H. P. (2009). A giant, late archean lake system: The meentheena member (tumbiana formation; fortescue group), Western Australia. Precambrian Research, 174, 215–240. https://doi.org/10.1016/j.precamres.2009.07.005
Beal, E. J., House, C. H., & Orphan, V. J. (2009). Manganese- and iron-dependent marine methane oxidation. Science, 325, 184–187. https://doi.org/10.1126/science.1169984
Benzerara, K., Meibom, A., Gautier, Q., Kaźmierczak, J., Stolarski, J., Menguy, N., & Brown, G. E. (2010). Nanotextures of aragonite in stromatolites from the quasi-marine Satonda crater lake, Indonesia. Geological Society, London, Special Publications, 336, 211–224. https://doi.org/10.1144/SP336.10
Beyssac, O., Goffé, B., Petitet, J.-P., Froigneux, E., Moreau, M., & Rouzaud, J.-N. (2003). On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59, 2267–2276. https://doi.org/10.1016/S1386-1425(03)00070-2
Blake, T. S., Buick, R., Brown, S. J. A., & Barley, M. E. (2004). Geochronology of a Late Archaean flood basalt province in the Pilbara Craton, Australia: Constraints on basin evolution, volcanic and sedimentary accumulation, and continental drift rates. Precambrian Research, 133, 143–173. https://doi.org/10.1016/j.precamres.2004.03.012
Bolhar, R., & Van Kranendonk, M. J. (2007). A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Research, 155, 229–250. https://doi.org/10.1016/j.precamres.2007.02.002
Bontognali, T. R. R., Sessions, A. L., Allwood, A. C., Fischer, W. W., Grotzinger, J. P., Summons, R. E., & Eiler, J. M. (2012). Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism. Proceedings of the National Academy of Sciences, 109, 15146–15151. https://doi.org/10.1073/pnas.1207491109
Bosak, T., Knoll, A. H., & Petroff, A. P. (2013). The meaning of stromatolites. Annual Review of Earth and Planetary Sciences, 41, 21–44. https://doi.org/10.1146/annurev-earth-042711-105327
Bradley, A., Leavitt, W., Schmidt, M., Knoll, A. H., Girguis, P. R., & Johnston, D. T. (2016). Patterns of sulfur isotope fractionation during microbial sulfate reduction. Geobiology, 14, 91–101. https://doi.org/10.1111/gbi.12149
Brüchert, V., & Pratt, L. M. (1996). Contemporaneous early diagenetic formation of organic and inorganic sulfur in estuarine sediments from St. Andrew Bay, Florida, USA. Geochimica et Cosmochimica Acta, 60, 2325–2332. https://doi.org/10.1016/0016-7037(96)00087-7
Brunner, B., Bernasconi, S. M., Kleikemper, J., & Schroth, M. H. (2005). A model for oxygen and sulfur isotope fractionation in sulfate during bacterial sulfate reduction processes. Geochimica et Cosmochimica Acta, 69, 4773–4785. https://doi.org/10.1016/j.gca.2005.04.017
Buick, R. (1992). The antiquity of oxygenic photosynthesis: Evidence from stromatolites in sulphate-deficient Archaean lakes. Science, 255, 74–77. https://doi.org/10.1126/science.11536492
Byerly, G. R., Lower, D. R., & Walsh, M. M. (1986). Stromatolites from the 3,300-3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature, 319, 489–491. https://doi.org/10.1038/319489a0
Canfield, D. (2001). Biogeochemistry of sulfur isotopes. Reviews in Mineralogy and Geochemistry, 43, 607–636. https://doi.org/10.2138/gsrmg.43.1.607
Canfield, D. E., Farquhar, J., & Zerkle, A. L. (2010). High isotope fractionations during sulfate reduction in a low-sulfate euxinic ocean analog. Geology, 38, 415–418. https://doi.org/10.1130/G30723.1
Canfield, D. E., Raiswell, R., & Bottrell, S. H. (1992). The reactivity of sedimentary iron minerals toward sulfide. American Journal of Science, 292, 659–683. https://doi.org/10.2475/ajs.292.9.659
Canfield, D. E., Raiswell, R., Westrich, J. T., Reaves, C. M., & Berner, R. A. (1986). The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chemical Geology, 54, 149–155. https://doi.org/10.1016/0009-2541(86)90078-1
Chanton, J. P., Martens, C. S., & Goldhaber, M. B. (1987). Biogeochemical cycling in an organic-rich coastal marine basin. 7. Sulfur mass balance, oxygen uptake and sulfide retention. Geochimica et Cosmochimica Acta, 51, 1187–1199. https://doi.org/10.1016/0016-7037(87)90211-0
Crowe, S. A., Paris, G., Katsev, S., Jones, C., Kim, S.-T., Zerkle, A. L., … Canfield, D. E. (2014). Sulfate was a trace constituent of Archean seawater. Science, 346, 735–739. https://doi.org/10.1126/science.1258966
Dale, A. W., Brüchert, V., Alperin, M., & Regnier, P. (2009). An integrated sulfur isotope model for Namibian shelf sediments. Geochimica et Cosmochimica Acta, 73, 1924–1944. https://doi.org/10.1016/j.gca.2008.12.015
Detmers, J., Brüchert, V., Habicht, K. S., & Kuever, J. (2001). Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Applied and Environmental Microbiology, 67, 888–894. https://doi.org/10.1128/AEM.67.2.888-894.2001
Ding, T., Valkiers, S., Kipphardt, H., De Bièvre, P., Taylor, P. D. P., Gonfiantini, R., & Krouse, R. (2001). Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochimica et Cosmochimica Acta, 65, 2433–2437. https://doi.org/10.1016/S0016-7037(01)00611-1
Domagal-Goldman, S. D., Kasting, J. F., Johnston, D. T., & Farquhar, J. (2008). Organic haze, glaciations and multiple sulfur isotopes in the Mid-Archean Era. Earth and Planetary Science Letters, 269, 29–40. https://doi.org/10.1016/j.epsl.2008.01.040
Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., & Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews, 96, 141–162. https://doi.org/10.1016/j.earscirev.2008.10.005
Farquhar, J., Bao, H., & Thiemens, M. (2000). Atmospheric influence of Earth's earliest sulfur cycle. Science, 289, 756–758. https://doi.org/10.1126/science.289.5480.756
Farquhar, J., Johnston, D. T., & Wing, B. A. (2007). Implications of conservation of mass effects on mass-dependent isotope fractionations: Influence of network structure on sulfur isotope phase space of dissimilatory sulfate reduction. Geochimica et Cosmochimica Acta, 71, 5862–5875. https://doi.org/10.1016/j.gca.2007.08.028
Farquhar, J., Peters, M., Johnston, D. T., Strauss, H., Masterson, A., Wiechert, U., & Kaufman, A. J. (2007). Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature, 449, 706–709. https://doi.org/10.1038/nature06202
Fike, D. A., Bradley, A. S., & Rose, C. V. (2015). Rethinking the ancient sulfur cycle. Annual Review of Earth and Planetary Sciences, 43, 593–622. https://doi.org/10.1146/annurev-earth-060313-054802
Fike, D. A., Finke, N., Zha, J., Blake, G., Hoehler, T. M., & Orphan, V. J. (2009). The effect of sulfate concentration on (sub) millimeter-scale sulfide δ 34 S in hypersaline cyanobacterial mats over the diurnal cycle. Geochimica et Cosmochimica Acta, 73, 6187–6204. https://doi.org/10.1016/j.gca.2009.07.006
Fike, D. A., Gammon, C. L., Ziebis, W., & Orphan, V. J. (2008). Micron-scale mapping of sulfur cycling across the oxycline of a cyanobacterial mat: A paired nanoSIMS and CARD-FISH approach. ISME Journal, 2, 749–759. https://doi.org/10.1038/ismej.2008.39
Fischer, W. W., Fike, D. A., Johnson, J. E., Raub, T. D., Guan, Y., Kirschvink, J. L., & Eiler, J. M. (2014). SQUID–SIMS is a useful approach to uncover primary signals in the Archean sulfur cycle. Proceedings of the National Academy of Sciences, 111, 5468–5473. https://doi.org/10.1073/pnas.1322577111
Flannery, D. T., Van Kranendonk, M. J., Mazumder, R., & Walter, M. R. (2014). The ca 2.74 Ga Mopoke Member, Kylena Formation: A marine incursion into the northern Fortescue Group? Australian Journal of Earth Sciences, 61, 1095–1108. https://doi.org/10.1080/08120099.2014.960898
Frei, R., Gaucher, C., Poulton, S. W., & Canfield, D. E. (2009). Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature, 461, 250–253. https://doi.org/10.1038/nature08266
French, K. L., Hallmann, C., Hope, J. M., Schoon, P. L., Zumberge, J. A., Hoshino, Y., … Brocks, J. J. (2015). Reappraisal of hydrocarbon biomarkers in Archean rocks. Proceedings of the National Academy of Sciences, 112, 5915–5920. https://doi.org/10.1073/pnas.1419563112
Goldstein, T., & Aizenshtat, Z. (1994). Thermochemical sulfate reduction a review. Journal of Thermal Analysis and Calorimetry, 42, 241–290. https://doi.org/10.1007/BF02547004
Gomes, M. L., & Hurtgen, M. T. (2013). Sulfur isotope systematics of a euxinic, low-sulfate lake: Evaluating the importance of the reservoir effect in modern and ancient oceans. Geology, 41, 663–666. https://doi.org/10.1130/G34187.1
Grassineau, N. V., Nisbet, E. G., Bickle, M. J., Fowler, C. M. R., Lowry, D., Mattey, D. P., … Martin, A. (2001). Antiquity of the biological sulphur cycle: Evidence from sulphur and carbon isotopes in 2700 million year old rocks of the Belingwe Belt, Zimbabwe. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268, 113–119. https://doi.org/10.1098/rspb.2000.1338
Grotzinger, J. P., & Knoll, A. H. (1999). Stromatolites in precambrian carbonates: Evolutionary mileposts or environmental dipsticks. Annual Review of Earth and Planetary Sciences, 27, 313–358. https://doi.org/10.1146/annurev.earth.27.1.313
Habicht, K. S., & Canfield, D. E. (1997). Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochimica et Cosmochimica Acta, 61, 5351–5361. https://doi.org/10.1016/S0016-7037(97)00311-6
Habicht, K. S., & Canfield, D. E. (2001). Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments. Geology, 29, 555–558. https://doi.org/10.1130/0091-7613(2001)029<0555:IFBSRN>2.0.CO;2
Habicht, K. S., Gade, M., Thamdrup, B., Berg, P., & Canfield, D. E. (2002). Calibration of sulfate levels in the Archean ocean. Science, 298, 2372–2374. https://doi.org/10.1126/science.1078265
Halevy, I. (2013). Production, preservation, and biological processing of mass-independent sulfur isotope fractionation in the Archean surface environment. Proceedings of the National Academy of Sciences, 110, 17644–17649. https://doi.org/10.1073/pnas.1213148110
Halevy, I., Johnston, D. T., & Schrag, D. P. (2010). Explaining the structure of the Archean mass-independent sulfur isotope record. Science, 329, 204–207. https://doi.org/10.1126/science.1190298
Haroon, M. F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., … Tyson, G. W. (2013). Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500, 567–570. https://doi.org/10.1038/nature12375
Hauri, E. H., Papineau, D., Wang, J., & Hillion, F. (2016). High-precision analysis of multiple sulfur isotopes using NanoSIMS. Chemical Geology, 420, 148–161. https://doi.org/10.1016/j.chemgeo.2015.11.013
Hayes, J. (1994). Global methanotrophy at the Archean-Proterozoic transition. Early Life on Earth, 84, 220–236.
Hinrichs, K.-U. (2002). Microbial fixation of methane carbon at 2.7 Ga: Was an anaerobic mechanism possible? Geochemistry, Geophysics, Geosystems, 3, 1–10. https://doi.org/10.1029/2001GC000286
Johnston, D. T. (2011). Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle. Earth-Science Reviews, 106, 161–183. https://doi.org/10.1016/j.earscirev.2011.02.003
Johnston, D. T., Farquhar, J., & Canfield, D. E. (2007). Sulfur isotope insights into microbial sulfate reduction: When microbes meet models. Geochimica et Cosmochimica Acta, 71, 3929–3947. https://doi.org/10.1016/j.gca.2007.05.008
Kakegawa, T., & Nanri, H. (2006). Sulfur and carbon isotope analyses of 2.7 Ga stromatolites, cherts and sandstones in the Jeerinah Formation, Western Australia. Precambrian Research, 148, 115–124. https://doi.org/10.1016/j.precamres.2006.03.005
Kamber, B. S., & Whitehouse, M. J. (2007). Micro-scale sulphur isotope evidence for sulphur cycling in the late Archean shallow ocean. Geobiology, 5, 5–17.
Kasting, J. F., & Ono, S. (2006). Palaeoclimates: The first two billion years. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 361, 917–929. https://doi.org/10.1098/rstb.2006.1839
Kaufman, A. J., Johnston, D. T., Farquhar, J., Masterson, A. L., Lyons, T. W., Bates, S., … Buick, R. (2007). Late Archean biospheric oxygenation and atmospheric evolution. Science, 317, 1900–1903. https://doi.org/10.1126/science.1138700
Kendall, B., Reinhard, C. T., Lyons, T. W., Kaufman, A. J., Poulton, S. W., & Anbar, A. D. (2010). Pervasive oxygenation along late Archaean ocean margins. Nature Geoscience, 3, 647–652. https://doi.org/10.1038/ngeo942
Kurzweil, F., Claire, M., Thomazo, C., Peters, M., Hannington, M., & Strauss, H. (2013). Atmospheric sulfur rearrangement 2.7 billion years ago: Evidence for oxygenic photosynthesis. Earth and Planetary Science Letters, 366, 17–26. https://doi.org/10.1016/j.epsl.2013.01.028
Labidi, J., Cartigny, P., & Moreira, M. (2013). Non-chondritic sulphur isotope composition of the terrestrial mantle. Nature, 501, 208–211. https://doi.org/10.1038/nature12490
Lahfid, A., Beyssac, O., Deville, E., Negro, F., Chopin, C., & Goffé, B. (2010). Evolution of the Raman spectrum of carbonaceous material in low-grade metasediments of the Glarus Alps (Switzerland). Terra Nova, 22, 354–360. https://doi.org/10.1111/j.1365-3121.2010.00956.x
Lepot, K., Benzerara, K., Brown, G. E., & Philippot, P. (2008). Microbially influenced formation of 2,724-million-year-old stromatolites. Nature Geoscience, 1, 118–121. https://doi.org/10.1038/ngeo107
Lepot, K., Benzerara, K., Rividi, N., Cotte, M., Brown, G. E. Jr, & Philippot, P. (2009). Organic matter heterogeneities in 2.72 Ga stromatolites: Alteration versus preservation by sulfur incorporation. Geochimica et Cosmochimica Acta, 73, 6579–6599. https://doi.org/10.1016/j.gca.2009.08.014
Lyons, T. W., Reinhard, C. T., & Planavsky, N. J. (2014). The rise of oxygen in Earth/'s early ocean and atmosphere. Nature, 506, 307–315. https://doi.org/10.1038/nature13068
Marin-Carbonne, J., Chaussidon, M., & Robert, F. (2012). Micrometer-scale chemical and isotopic criteria (O and Si) on the origin and history of Precambrian cherts: Implications for paleo-temperature reconstructions. Geochimica et Cosmochimica Acta, 92, 129–147. https://doi.org/10.1016/j.gca.2012.05.040
Marin-Carbonne, J., Rollion-Bard, C., Bekker, A., Rouxel, O., Agangi, A., Cavalazzi, B., … McKeegan, K. D. (2014). Coupled Fe and S isotope variations in pyrite nodules from Archean shale. Earth and Planetary Science Letters, 392, 67–79. https://doi.org/10.1016/j.epsl.2014.02.009
Nishizawa, M., Maruyama, S., Urabe, T., Takahata, N., & Sano, Y. (2010). Micro-scale (1.5 μm) sulphur isotope analysis of contemporary and early Archean pyrite. Rapid Communications in Mass Spectrometry, 24, 1397–1404. https://doi.org/10.1002/rcm.4517
Ohmoto, H., Kakegawa, T., & Lowe, D. (1993). 3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: Sulfur isotope evidence. Science, 262, 555–557. https://doi.org/10.1126/science.11539502
Ono, S., Wing, B., Rumble, D., & Farquhar, J. (2006). High precision analysis of all four stable isotopes of sulfur (32S, 33S, 34S and 36S) at nanomole levels using a laser fluorination isotope-ratio-monitoring gas chromatography–mass spectrometry. Chemical Geology, 225, 30–39. https://doi.org/10.1016/j.chemgeo.2005.08.005
Otake, T., Lasaga, A. C., & Ohmoto, H. (2008). Ab initio calculations for equilibrium fractionations in multiple sulfur isotope systems. Chemical Geology, 249, 357–376. https://doi.org/10.1016/j.chemgeo.2008.01.020
Paris, G., Adkins, J., Sessions, A., Webb, S., & Fischer, W. (2014). Neoarchean carbonate–associated sulfate records positive Δ33S anomalies. Science, 346, 739–741. https://doi.org/10.1126/science.1258211
Pavlov, A. A., Kasting, J. F., Eigenbrode, J. L., & Freeman, K. H. (2001). Organic haze in Earth's early atmosphere: Source of low-13C Late Archean kerogens? Geology, 29, 1003–1006. https://doi.org/10.1130/0091-7613(2001)029&1003:OHIESE>2.0.CO;2
Philippot, P., Van Kranendonk, M., Van Zuilen, M., Lepot, K., Rividi, N., Teitler, Y., … de Wit, M. (2009). Early traces of life investigations in drilling Archean hydrothermal and sedimentary rocks of the Pilbara Craton, Western Australia and Barberton Greenstone Belt, South Africa. Comptes Rendus Palevol, 8, 649–663. https://doi.org/10.1016/j.crpv.2009.06.006
Philippot, P., Van Zuilen, M., Lepot, K., Thomazo, C., Farquhar, J., & Van Kranendonk, M. J. (2007). Early Archaean microorganisms preferred elemental sulfur, not sulfate. Science, 317, 1534–1537. https://doi.org/10.1126/science.1145861
Philippot, P., Van Zuilen, M., & Rollion-Bard, C. (2012). Variations in atmospheric sulphur chemistry on early Earth linked to volcanic activity. Nature Geosciences, 5, 668–674. https://doi.org/10.1038/ngeo1534
Raven, M. R., Sessions, A. L., Adkins, J. F., & Thunell, R. C. (2016). Rapid organic matter sulfurization in sinking particles from the Cariaco Basin water column. Geochimica et Cosmochimica Acta, 190, 175–190. https://doi.org/10.1016/j.gca.2016.06.030
Raven, M. R., Sessions, A. L., Fischer, W. W., & Adkins, J. F. (2016). Sedimentary pyrite δ34S differs from porewater sulfide in Santa Barbara Basin: Proposed role of organic sulfur. Geochimica et Cosmochimica Acta, 186, 120–134. https://doi.org/10.1016/j.gca.2016.04.037
Rees, C. E. (1973). A steady-state model for sulphur isotope fractionation in bacterial reduction processes. Geochimica et Cosmochimica Acta, 37, 1141–1162. https://doi.org/10.1016/0016-7037(73)90052-5
Rickard, D. (2013). Sulfidic sediments and sedimentary rocks. Amsterdam, The Netherlands: Newnes.
Rickard, D., Mussmann, M., & Steadman, J. A. (2017). Sedimentary sulfides. Elements, 13, 117–122. https://doi.org/10.2113/gselements.13.2.117
Ries, J. B., Fike, D. A., Pratt, L. M., Lyons, T. W., & Grotzinger, J. P. (2009). Superheavy pyrite (δ34Spyr> δ34SCAS) in the terminal Proterozoic Nama Group, southern Namibia: A consequence of low seawater sulfate at the dawn of animal life. Geology, 37, 743–746. https://doi.org/10.1130/G25775A.1
Rividi, N., van Zuilen, M., Philippot, P., Ménez, B., Godard, G., & Poidatz, E. (2010). Calibration of carbonate composition using micro-Raman analysis: Application to planetary surface exploration. Astrobiology, 10, 293–309. https://doi.org/10.1089/ast.2009.0388
Roerdink, D. L., Mason, P. R. D., Farquhar, J., & Reimer, T. (2012). Multiple sulfur isotopes in Paleoarchean barites identify an important role for microbial sulfate reduction in the early marine environment. Earth and Planetary Science Letters, 331–332, 177–186. https://doi.org/10.1016/j.epsl.2012.03.020
Sakurai, R., Ito, M., Ueno, Y., Kitajima, K., & Maruyama, S. (2005). Facies architecture and sequence-stratigraphic features of the Tumbiana Formation in the Pilbara Craton, northwestern Australia: Implications for depositional environments of oxygenic stromatolites during the Late Archean. Precambrian Research, 138, 255–273. https://doi.org/10.1016/j.precamres.2005.05.008
Schopf, J. W. (1983). Earth's earliest biosphere: Its origin and evolution. Princeton, NJ: Princeton University Press.
Schopf, J. W. (2006). Fossil evidence of Archaean life. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 869–885. https://doi.org/10.1098/rstb.2006.1834
Sforna, M. C., Philippot, P., Somogyi, A., van Zuilen, M. A., Medjoubi, K., Schoepp-Cothenet, B., … Visscher, P. T. (2014). Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago. Nature Geoscience, 7, 811–815. https://doi.org/10.1038/ngeo2276
Sforna, M. C., van Zuilen, M. A., & Philippot, P. (2014). Structural characterization by Raman hyperspectral mapping of organic carbon in the 3.46 billion-year-old Apex chert, Western Australia. Geochimica et Cosmochimica Acta, 124, 18–33. https://doi.org/10.1016/j.gca.2013.09.031
Shen, Y., & Buick, R. (2004). The antiquity of microbial sulfate reduction. Earth-Science Reviews, 64, 243–272. https://doi.org/10.1016/S0012-8252(03)00054-0
Shen, Y., Buick, R., & Canfield, D. E. (2001). Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature, 410, 77–81. https://doi.org/10.1038/35065071
Shen, Y., Farquhar, J., Masterson, A., Kaufman, A. J., & Buick, R. (2009). Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth and Planetary Science Letters, 279, 383–391. https://doi.org/10.1016/j.epsl.2009.01.018
Sim, M. S., Bosak, T., & Ono, S. (2011). Large Sulfur Isotope Fractionation Does Not Require Disproportionation. Science, 333, 74–77. https://doi.org/10.1126/science.1205103
Slodzian, G., Hillion, F., Stadermann, F. J., & Zinner, E. (2004). QSA influences on isotopic ratio measurements. Applied Surface Science, 231, 874–877. https://doi.org/10.1016/j.apsusc.2004.03.155
Slotznick, S. P., & Fischer, W. W. (2016). Examining Archean methanotrophy. Earth and Planetary Science Letters, 441, 52–59. https://doi.org/10.1016/j.epsl.2016.02.013
Smith, R. E., Perdrix, J., & Parks, T. (1982). Burial metamorphism in the Hamersley basin, Western Australia. Journal of Petrology, 23, 75–102. https://doi.org/10.1093/petrology/23.1.75
Strauss, H. (2004). 4 Ga of seawater evolution: Evidence from the sulfur isotopic composition of sulfate. Geological Society of America Special Papers, 379, 195–205.
Stüeken, E. E., Buick, R., & Schauer, A. J. (2015). Nitrogen isotope evidence for alkaline lakes on late Archean continents. Earth and Planetary Science Letters, 411, 1–10. https://doi.org/10.1016/j.epsl.2014.11.037
Thode, H. G., & Goodwin, A. M. (1983). Further sulfur and carbon isotope studies of late Archean iron-formations of the Canadian shield and the rise of sulfate reducing bacteria. In B. Nagy, R. Weber, J. C. Guerrero, & M. Schidlowski (Eds.), Developments in precambrian geology (pp. 229–248). Amsterdam, The Netherlands: Elsevier.
Thomazo, C., Ader, M., Farquhar, J., & Philippot, P. (2009). Methanotrophs regulated atmospheric sulfur isotope anomalies during the Mesoarchean (Tumbiana Formation, Western Australia). Earth and Planetary Science Letters, 279, 65–75. https://doi.org/10.1016/j.epsl.2008.12.036
Thomazo, C., Ader, M., & Philippot, P. (2011). Extreme 15N-enrichments in 2.72-Gyr-old sediments: Evidence for a turning point in the nitrogen cycle. Geobiology, 9, 107–120. https://doi.org/10.1111/j.1472-4669.2011.00271.x
Thomazo, C., Nisbet, E. G., Grassineau, N. V., Peters, M., & Strauss, H. (2013). Multiple sulfur and carbon isotope composition of sediments from the Belingwe Greenstone Belt (Zimbabwe): A biogenic methane regulation on mass independent fractionation of sulfur during the Neoarchean? Geochimica et Cosmochimica Acta, 121, 120–138. https://doi.org/10.1016/j.gca.2013.06.036
Ueno, Y., Ono, S., Rumble, D., & Maruyama, S. (2008). Quadruple sulfur isotope analysis of ca. 3.5 Ga Dresser Formation: New evidence for microbial sulfate reduction in the early Archean. Geochimica et Cosmochimica Acta, 72, 5675–5691. https://doi.org/10.1016/j.gca.2008.08.026
Visscher, P. T., Reid, R. P., & Bebout, B. M. (2000). Microscale observations of sulfate reduction: Correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology, 28, 919–922. https://doi.org/10.1130/0091-7613(2000)28&919:MOOSRC>2.0.CO;2
Wacey, D. (2010). Stromatolites in the ∼3400 Ma Strelley Pool Formation, Western Australia: Examining Biogenicity from the Macro- to the Nano-Scale. Astrobiology, 10, 381–395. https://doi.org/10.1089/ast.2009.0423
Wacey, D., Kilburn, M. R., Saunders, M., Cliff, J., & Brasier, M. D. (2011). Microfossils of sulphur-metabolizing cells in 3.4-billion-year-old rocks of Western Australia. Nature Geoscience, 4, 698–702. https://doi.org/10.1038/ngeo1238
Watanabe, Y., Farquhar, J., & Ohmoto, H. (2009). Anomalous Fractionations of Sulfur Isotopes During Thermochemical Sulfate Reduction. Science, 324, 370–373. https://doi.org/10.1126/science.1169289
Williford, K. H., Ushikubo, T., Lepot, K., Kitajima, K., Hallmann, C., Spicuzza, M. J., … Valley, J. W. (2016). Carbon and sulfur isotopic signatures of ancient life and environment at the microbial scale: Neoarchean shales and carbonates. Geobiology, 14, 105–128. https://doi.org/10.1111/gbi.12163
Zahnle, K., Claire, M., & Catling, D. (2006). The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology, 4, 271–283. https://doi.org/10.1111/j.1472-4669.2006.00085.x
Zerkle, A. L., Claire, M. W., Domagal-Goldman, S. D., Farquhar, J., & Poulton, S. W. (2012). A bistable organic-rich atmosphere on the Neoarchaean Earth. Nature Geoscience, 5, 359–363. https://doi.org/10.1038/ngeo1425
Zhelezinskaia, I., Kaufman, A. J., Farquhar, J., & Cliff, J. (2014). Large sulfur isotope fractionations associated with Neoarchean microbial sulfate reduction. Science, 346, 742–744. https://doi.org/10.1126/science.1256211