[en] This paper presents a design methodology for a piezoelectric vibration absorber able to damp multiple nonlinear resonances. The design of multimodal linear piezoelectric absorbers is first reviewed. Next, based on the dynamics of the structure to which linear absorbers are attached, the design is extended to the nonlinear regime. The methodology is inspired from a principle of similarity: if a nonlinearity of one type is present in the host structure, the same type of nonlinearity is used in the absorbers. An explicit semi-analytical expression of the nonlinear coefficients in the absorber is obtained thanks to a first-order harmonic balance and a straightforward series expansion. Numerical examples are analysed to demonstrate the efficiency of the proposed approach.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Raze, Ghislain ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Lossouarn, Boris; Conservatoire national des arts et métiers > Laboratoire de Mécanique des Structures et des Systèmes Couplés
Paknejad, Ahmad; Université Libre de Bruxelles - ULB > Department of Bio-, Electro- and Mechanical Systems > Precision Mechatronics Laboratory
Zhao, Guoying; Université Libre de Bruxelles - ULB > Department of Bio-, Electro- and Mechanical Systems > Precision Mechatronics Laboratory
Deü, Jean-François; Conservatoire national des arts et métiers > Laboratoire de Mécanique des Structures et des Systèmes Couplés
Collette, Christophe ; Université Libre de Bruxelles - ULB > Department of Bio-, Electro- and Mechanical Systems > Precision Mechatronics Laboratory
Kerschen, Gaëtan ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux
Language :
English
Title :
A multimodal nonlinear piezoelectric vibration absorber
Publication date :
September 2018
Event name :
ISMA 2018 - 28th international conference on Noise and Vibration Engineering
R. L. Forward, Electronic damping of vibrations in optical structures, Applied optics, Vol. 18, No. 5, (1979), pp. 690-697.
N. W. Hagood, A. von Flotow, Damping of structural vibrations with piezoelectric materials and passive electrical networks, Journal of Sound and Vibration, Vol. 146, No. 2, (1991), pp. 243-268.
D. Edberg, A. Bicos, J. Fechter, On piezoelectric energy conversion for electronic passive damping enhancement, Proceedings of Damping (1991), pp. 717-724.
J. J. Hollkamp, Multimodal passive vibration suppression with piezoelectric materials and resonant shunts, Journal of intelligent material systems and structures, Vol. 5, No. 1, (1994), pp. 49-57.
S.-Y. Wu, Method for multiple-mode shunt damping of structural vibration using a single PZT transducer, Smart structures and materials 1998: passive damping and isolation, International Society for Optics and Photonics (1998), pp. 159-169.
S. Behrens, S. R. Moheimani, A. Fleming, Multiple mode current flowing passive piezoelectric shunt controller, Journal of Sound and Vibration, Vol. 266, No. 5, (2003), pp. 929-942.
B. Lossouarn, M. Aucejo, J.-F. Deü, Multimodal coupling of periodic lattices and application to rod vibration damping with a piezoelectric network, Smart Materials and Structures, Vol. 24, No. 4, (2015), p. 045018.
G. Habib, G. Kerschen, A principle of similarity for nonlinear vibration absorbers, Physica D: Nonlinear Phenomena, Vol. 332, (2016), pp. 1-8.
P. Soltani, G. Kerschen, The nonlinear piezoelectric tuned vibration absorber, Smart Materials and Structures, Vol. 24, No. 7, (2015), p. 075015.
B. Lossouarn, J.-F. Deü, G. Kerschen, A fully passive nonlinear piezoelectric vibration absorber, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (In Press).
P. Soltani, G. Kerschen, G. Tondreau, A. Deraemaeker, Piezoelectric vibration damping using resonant shunt circuits: an exact solution, Smart materials and structures, Vol. 23, No. 12, (2014), p. 125014.
A. Preumont, Vibration control of active structures, Springer (2011).
A. J. Fleming, S. Behrens, S. R. Moheimani, Innovations in piezoelectric shunt damping, Smart Structures and Devices, International Society for Optics and Photonics (2001), pp. 89-102.
A. Fleming, S. Behrens, S. Moheimani, Reducing the inductance requirements of piezoelectric shunt damping systems, Smart materials and structures, Vol. 12, No. 1, (2003), p. 57.
A. Cigada, S. Manzoni, M. Redaelli, M. Vanali, Optimization of the current flowing technique aimed at semi-passive multi-modal vibration reduction, Journal of Vibration and Control, Vol. 18, No. 2, (2012), pp. 298-312.
N. Van Der Aa, H. Ter Morsche, R. Mattheij, Computation of eigenvalue and eigenvector derivatives for a general complex-valued eigensystem, Electronic Journal of Linear Algebra, Vol. 16, No. 1, (2007), p. 26.
G. Habib, G. Kerschen, Linearization of Nonlinear Resonances Through the Addition of Intentional Nonlinearities, Recent Trends in Applied Nonlinear Mechanics and Physics, Springer (2018), pp. 215-225.
T. Detroux, L. Renson, L. Masset, G. Kerschen, The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems, Computer Methods in Applied Mechanics and Engineering, Vol. 296, (2015), pp. 18-38.
O. Thomas, J.-F. Deü, J. Ducarne, Vibrations of an elastic structure with shunted piezoelectric patches: efficient finite element formulation and electromechanical coupling coefficients, International journal for numerical methods in engineering, Vol. 80, No. 2, (2009), pp. 235-268.
T. Detroux, G. Habib, L. Masset, G. Kerschen, Performance, robustness and sensitivity analysis of the nonlinear tuned vibration absorber, Mechanical Systems and Signal Processing, Vol. 60, (2015), pp. 799-809.