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Abstract
This paper presents a design methodology for a piezoelectric vibration absorber able to damp multiple non-
linear resonances. The design of multimodal linear piezoelectric absorbers is first reviewed. Next, based on
the dynamics of the structure to which linear absorbers are attached, the design is extended to the nonlinear
regime. The methodology is inspired from a principle of similarity: if a nonlinearity of one type is present
in the host structure, the same type of nonlinearity is used in the absorbers. An explicit semi-analytical ex-
pression of the nonlinear coefficients in the absorber is obtained thanks to a first-order harmonic balance and
a straightforward series expansion. Numerical examples are analysed to demonstrate the efficiency of the
proposed approach.

1 Introduction

Owing to stringent requirements on performance, low-emission regulations and increasing price of energy,
mechanical structures in the aerospace industry are becoming more lightweight, which makes them prone
to experience high-amplitude vibrations. These structures can be subjected to broadband or multiharmonic
forcing excitations. For sufficiently high forcing amplitudes, the induced motion can trigger nonlinearities
such as geometric nonlinearities, contact or friction in bolted connections.

Among the existing possibilities for vibration mitigation, the piezoelectric vibration absorber appears as an
attractive option: it does not include additional moving parts, the absorption system can be localised away
from the points where the vibratory amplitude is critical and it eases the implementation of semi-active
control. The first use of a piezoelectric vibration absorber is attributed to Forward [1]. Hagood and von
Flotow [2] later provided design rules for piezoelectric shunts. Ever since that pioneering work, there has
been a growing body of literature on the subject.

Real-life structures exhibit multiple resonances. If the excitation spectrum is not localised around a specific
frequency, several modes can be excited simultaneously. Edberg et al [3] first proposed a two-mode shunt
circuit connected to a single piezoelectric patch to damp simultaneously two structural modes. Hollkamp [4]
later generalised it to any number of modes. The circuit of Hollkamp is unfortunately not easy to tune. Wu [5]
proposed a multimodal current blocking shunt circuit with an associated design methodology. Despite its
efficiency, the number of required electrical components grows quadratically with respect to the number of
mode to be controlled. It makes the use of this circuit impractical for a large number of modes. Behrens et
al [6] proposed a simplified multimodal current flowing shunt circuit, requiring one RLC branch per mode
to be damped. Interestingly, another approach involving the connection of a mechanical structure to its
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electrical analogue through multiple piezoelectric patches can serve the same purpose, as done by Lossouarn
et al [7].

A linear absorber is detuned when nonlinearities arise due to high forcing amplitudes, and its performance
might be substantially reduced. Through the intentional and adequate use of nonlinearities in the absorber,
this detrimental effect can be significantly mitigated. Habib and Kerschen [8] showed that the design of a
general nonlinear vibration absorber can be guided by a principle of similarity. This principle states that
the mathematical form of the nonlinearity in the absorber should be identical to that of the primary struc-
ture. The range of forcing amplitudes in which the absorber is efficient can therefore be extended. Soltani
and Kerschen [9] applied successfully this principle to a single-mode piezoelectric absorber, the nonlinear
piezoelectric tuned vibration absorber (NPTVA), which was later experimentally realised by Lossouarn et
al [10].

This paper brings together the multimodal and nonlinear aspects and proposes a multimodal nonlinear piezo-
electric vibration absorber for the mitigation of multiple nonlinear resonances of mechanical systems using
a single piezoelectric transducer. Nonlinearities are located in a shunt circuit with multiple branches, each
tuned to a specific resonance frequency. The electrical nonlinearities are implemented using nonlinear ca-
pacitors. Their mathematical form is chosen thanks to a principle of similarity. An explicit expression of the
nonlinear coefficients is obtained with a first-order harmonic balance method followed by a series expansion.
The resulting absorber is able to effectively damp several nonlinear resonances.

2 Linear piezoelectric vibration absorber

This section briefly reviews the concepts of single-mode and multi-mode piezoelectric vibration absorbers.
The linear absorbers are designed independently of the nonlinearities in the primary structure, and serve as a
baseline for the design of nonlinear absorbers.

2.1 Single-mode piezoelectric vibration absorber

The purpose of a single-mode vibration absorber is to mitigate the vibration of its host structure. In Figure
1(a), the host structure is represented by a modal spring k and a modal massm. The classical resonant shunt,
as studied by Hagood and von Flotow [2], consists in connecting an series RL circuit to the electrodes of a
piezoelectric material (in this case a piezoelectric stack) as shown in Figure 1(b). The piezoelectric material
is a transducer, and is represented by both a mechanical and an electrical model. Mechanically, it behaves
as a spring kp,oc (the stiffness of the piezoelectric element when its electrodes are open-circuited) in parallel
with a force source fp proportional to the charge in the piezoelectric element (Figure 1(a)). Electrically, it
may be represented as a voltage source Vp proportional to the strain in the piezoelectric material in series
with a capacitor Cε

p (the capacitance of the piezoelectric material at constant strain). By connecting an
inductor L and a resistor R to the electrodes of the piezoelectric material, a resonant RLC circuit is therefore
created (Figure 1(b)). The tuning of the inductance and resistance is made according to the objectives at
stake. The most common objectives include the minimisation of the H∞ norm of the receptance [11] or the
maximisation of modal damping [2].

2.2 Multimodal piezoelectric vibration absorber

One of the interesting features of the piezoelectric vibration absorber is that it can simultaneously mitigate
the vibration of several modes of different frequencies if properly designed. Among the proposed approaches
in the literature, one of the simplest is the current flowing shunt circuit proposed by Behrens et al [6]. This
circuit is depicted in Figure 2. It consists in N resonant RLC branches, each tuned to a specific mode. It can
resonate at N different frequencies, providing the possibility for multimodal shunt damping with a single
piezoelectric transducer.
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Figure 1: Single-mode resonant piezoelectric shunt: mechanical representation (a) and electrical
representation (b).
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Figure 2: Current flowing shunt circuit.

The tuning methodology for this circuit relies on a model such as the one developed in the next subsection,
and is therefore postponed to Subsection 2.4.

2.3 Model of a piezoelectric structure

A model of coupled second-order ordinary differential equations of the coupled electromechanical system is
now derived. This model is necessary for the design of the absorbers, as discussed in the next subsection. The
dynamics of the piezoelectric structure is governed by the following linear ordinary differential equations

Msẍs + Csẋs + Ksxs = fs + fp, (1)

in which Ms, Cs and Ks are the structural mass, damping and stiffness matrices (including the mechanical
characteristics of the piezoelectric material), respectively, xs is the vector of generalised degrees of freedom,
fs is the vector of generalised loading and fp represents the generalised loading generated by the force source
in the piezoelectric element. If Qp is the charge in the piezoelectric material, this loading is given by

fp = θpBpQp, (2)

where Bp is an influence vector [12] and θp is a piezoelectric coupling coefficient. Since all the branches of
the current flowing circuit are in parallel, they are subjected to the same voltage difference V . Then, if qi is
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the electrical charge in the ith branch,

Liq̈i +Riq̇i +
1

Ci
qi = Vi = V, ∀i ∈ [1, ..., N ], (3)

where Li, Ri and Ci respectively are the inductance, resistance and capacitance of the ith branch of the
current flowing circuit represented in Figure 2. The voltage difference V is also the voltage across the
electrodes of the piezoelectric material. It is given by the strain-driven voltage source of the piezoelectric
material Vp, minus the voltage drop across the piezoelectric capacitance VCε

p
.

V = Vp − VCε
p

= θpB
T
p xs −

1

Cε
p

Qp (4)

The superscript T denotes a transposition. Charge conservation imposes the following equality

Qp =

N∑

i=1

qi. (5)

Combining Equations (3), (4) and (5) and introducing the vector of electric charges xe = [q1, ..., qN ]T yields

Meẍe + Ceẋe + Kexe = θp1N×1BT
p xs = Θxs, (6)

in which Me, Ce and Ke are the electrical mass, damping and stiffness matrices, respectively, given by

Me = diag([L1, ..., LN ]), (7)

Ce = diag([R1, ..., RN ]), (8)

Ke = diag

([
1

C1
, ...,

1

CN

])
+

1

Cε
p

1N×N , (9)

1m×n is a matrix of size m× n filled with ones and Θ is an electromechanical coupling matrix. Eventually,
a system of coupled electromechanical equations is obtained by combining Equations (1), (2) and (6).

[
Ms 0
0 Me

] [
ẍs

ẍe

]
+

[
Cs 0
0 Ce

] [
ẋs

ẋe

]
+

[
Ks −ΘT

−Θ Ke

] [
xs

xe

]
=

[
fs
0

]
. (10)

Equation (10) may be written in a more compact form

Mẍ + Cẋ + Kx = f , (11)

with xT = [xT
s , xT

e ].
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2.4 Design of the electrical circuit

In the current flowing circuit proposed by Behrens et al [6], one of the electrical elements of each branch
can be chosen arbitrarily. In that paper, the choice of the filter capacitances is arbitrary, the tuning of the
inductances of the current flowing circuit is straightforward, and the tuning of the resistances requires an
optimisation algorithm as the one proposed by Fleming et al [13]. However, no explanation was given on the
impact of the choice of the filter capacitances. The effect of placing a parallel capacitance across the terminals
of the piezoelectric material was shown to influence the damping performance of a single-mode shunt circuit
by Fleming et al [14]. The subsequent work of Cigada et al [15] highlighted the influence of the filter
capacitances in the case of the current flowing circuit. They showed that a higher filter capacitance enables a
better control capability on the mode it is associated to. Unfortunately, increasing the filter capacitance also
increases the coupling between the different branches of the circuit. It was shown that the tuning rule of [6]
started to fail as the filter capacitances were increased because of this increased coupling. An optimisation
algorithm was also proposed in that paper to tune the inductances so as to set the resonance frequencies of
the circuit properly.

In this paper, the choice of the filter capacitance is made beforehand, and a two-step optimisation algorithm
is used to tune the remaining electrical parameters. First, following the proposition of Cigada et al [15],
the inductances are tuned so that the undamped electrical circuit (the circuit without resistors) has the de-
sired resonance frequencies. In the case of multimodal shunt damping, these resonance frequencies should
match these of the structural modes that have to be damped. Then, the resistances are computed using the
optimisation algorithm proposed in [13].

For the first step of the algorithm, the cost function is defined as

f(L1, ..., LN ) =

N∑

i=1

(ω2
e,i − ω2

s,i)
2, (12)

where ωe,i is the ith resonance frequency of the electrical circuit and ωs,i is its targeted value. Since the
square of ωe,i are the eigenvalues of the matrix M−1

e Ke, their sensitivity to the inductance Lj can be com-
puted analytically (Van der Aa et al [16]) as

∂ω2
e,i

∂Lj
= −Φ−1e M−1

e

∂Me

∂Lj
M−1

e KeΦe, (13)

where Φe is the matrix of right eigenvectors of M−1
e Ke. The sensitivity of the cost function is then

∂f

∂Lj
= 2

N∑

i=1

(ω2
e,i − ω2

s,i)
∂ω2

e,i

∂Lj
. (14)

With this formulation, an unconstrained optimisation algorithm can readily be used. Once the resonance
frequencies of the undamped electrical circuit are tuned, the second step of the algorithm consists in tuning
the resistances values with the algorithm proposed in [13]. This algorithm is based on a state-space model
of the whole structure and aims at minimising the H2 norm of the receptance. With the model proposed in
Subsection 2.3, the state-space matrices Ã and B̃ can be readily built:

Ã =

[
0 I

−M−1K −M−1C

]
, B̃ =

[
0

M−1f

]
. (15)

The state-space matrix C̃ is chosen according to the choice of the degree of freedom at which the H2 norm
of the transfer function has to be minimised. The three state-space matrices can then be used in the algorithm
of [13].
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Another objective for the choice of the resistances could have been the optimisation of the H∞ norm of the
receptance, yielding the so-called equal-peak design. This kind of optimisation is often harder to accomplish
than the H2 optimisation and is beyond the scope of this paper. Nevertheless, the H2 optimisation algorithm
can provide nearly-equal peaks and is not that far from the H∞ optimum.

3 Nonlinear piezoelectric vibration absorber

Real-life structures often depart from their ideal linear behaviour as the forcing amplitude increases. The
inherent nonlinearities in the primary structure might have undesirable effects on the performance of the
absorbers. Using nonlinearities in the absorbers as well can benefit their performance. This section proposes
a design methodology for these nonlinear absorbers. It is assumed that the linear absorbers have already
been tuned.

3.1 A principle of similarity

In [8], the authors showed that an intentional and adequate use of nonlinearities in a vibration absorber
coupled to a nonlinear structure could substantially improve its performance. The nonlinearities have to be
chosen according to a principle of similarity: they should have the same mathematical form as those of the
primary structure.
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Figure 3: Nonlinear current flowing shunt circuit.

Figure 3 depicts the general arrangement of a nonlinear current flowing circuit. Essentially nonlinear
impedances are considered to reflect the effect of the nonlinearities in the primary structure. Their arbi-
trary placement is guided by the behaviour of the linear current flowing circuit. It is expected that each
nonlinear impedance will have a pronounced effect on the mode to which its branch is tuned. The physical
type of the nonlinear impedance is made depending on practical considerations such as availability of the
components. For instance, a nonlinear stiffness may be controlled with a nonlinear capacitor [9]. Another
possibility is to use saturable inductors as in [10]. Once the type of nonlinear components has been chosen,
it is necessary to determine their coefficients. In the following sections, a design methodology is proposed.
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3.2 Nonlinear frequency response

Using the same formalism as Habib and Kerschen [17], the coupled nonlinear electromechanical equations
are

Mẍ + Cẋ + Kx + knl

(
bnl(x) +

N∑

i=1

bnl,ibnl,i(x)

)
= f(t), (16)

where bnl represents the nonlinearities in the primary structure, and bnl,i are the nonlinearities in the ab-
sorbers. According to the principle of similarity, the latter are chosen to have the same mathematical form
as the former. In the following, it is assumed that the nonlinearities are cubic. The remaining unknowns are
the nonlinear coefficients of the absorbers, bnl,i.

The coupled electromechanical equations are normalised considering y = x/f0

Mÿ + Cẏ + Ky + α3

(
bnl(y) +

N∑

i=1

bnl,ibnl,i(y)

)
=

f(t)

f0
, (17)

in which α3 = knlf
2
0 for cubic nonlinearities. The nonlinearity parameter α3 quantifies the effects of both the

nonlinearity and the forcing. The solution of Equation (17) under a harmonic forcing can be approximated
with a first-order harmonic balance (HB) method. Using

y = qc cos(ωt) + qs sin(ωt), (18)

and introducing qT = [qT
c ,q

T
s ], Equation (17) becomes

Wq + α3

(
d1,nl(q) +

N∑

i=1

bnl,id1,nl,i(q)

)
= c. (19)

In Equation (19), the matrix W represents the linear dynamics, c is the forcing term, and the terms d1,nl

and d1,nl,i represent the nonlinearities in the primary structure and in the ith absorber, respectively. Thanks
to the HB method, Equation (17), representing a set of nonlinear ordinary differential equations, has been
transformed into a set of nonlinear algebraic equations. To find an approximate solution, it is further assumed
that the nonlinearity parameter α3 is small. Hence, the nonlinear response of the system may be expressed
as a series expansion in terms of α3 as

q = q(0) + α3q
(1) + α2

3q
(2) +O(α3

3). (20)

Inserting Equation (20) into (19) and equating coefficients of like powers of α3 up to first order leads to the
following explicit relations :

q(0) = W−1c, (21)

q(1) = −W−1
(

d1,nl(q
(0)) +

N∑

i=1

bnl,id1,nl,i(q
(0))

)
= q

(1)
nl +

N∑

i=1

bnl,iq
(1)
nl,i. (22)

Equation (21) indicates that q(0) represents the response of the system when no nonlinearity is present.
Equation (22) shows that first-order terms q(1) are generated by the nonlinear forces triggered by the zeroth-
order motion. These terms can be separated into terms due to the nonlinearities inside the primary structure
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q
(1)
nl and terms due to the nonlinearities inside the ith absorber q

(1)
nl,i. The square of the frequency response

function at a given degree of freedom is given by

H = (qc)
2
j + (qs)

2
j . (23)

Inserting the solution of (21) and (22) into (23) and keeping only the first-order terms leads to

H =
(
q(0)
c

) 2

j
+
(
q(0)
s

) 2

j
+ α3

[
2
(
q(0)
c

)
j

(
q
(1)
c,nl

)
j

+ 2
(
q(0)
s

)
j

(
q
(1)
s,nl

)
j

]

+ α3

[
N∑

i=1

bnl,i

[
2
(
q(0)
c

)
j

(
q
(1)
c,nl,i

)
j

+ 2
(
q(0)
s

)
j

(
q
(1)
s,nl,i

)
j

]]

= H(0) + α3H
(1)
nl

+ α3

N∑

i=1

bnl,iH
(1)
nl,i

. (24)

In Equation (24), three terms can be identified. The term H(0) stands for the frequency response function
of the underlying linear structure. The term α3H

(1)
nl is the modification brought by the (supposedly small)

nonlinear forces generated by the linear motion in the nonlinearities of the primary structure. The term
α3bnl,iH

(1)
nl,i is the modification brought by the (supposedly small) nonlinear forces generated by the linear

motion in the nonlinearitiy i of the absorbers. Thanks to the straightforward expansion, all these effects can
be separated to first order in α3.

With Equation (24), it is now possible to impose N conditions on the first-order nonlinear FRF. This yields
a linear system of size N × N , where the nonlinear coefficients bnl,i are the unknowns. Depending on the
imposed conditions, the nonlinear coefficients may or may not depend on the parameter α3.

3.3 Imposing equal peaks in the nonlinear regime

A condition enforcing equal peaks in the nonlinear regime will now be derived. It is first assumed that in
the linear regime, the linear absorbers yield the so-called equal-peak design, i. e. the peaks are equal in
magnitude and located at frequencies ωj,p1 and ωj,p2. Equation (24) can be used to enforce the equality of
the first-order nonlinear FRFs.

H(0)(ωj,p1) + α3

(
H

(1)
nl (ωj,p1) +

N∑

i=1

bnl,iH
(1)
nl,i(ωj,p1)

)

= H(0)(ωj,p2) + α3

(
H

(1)
nl (ωj,p2) +

N∑

i=1

bnl,iH
(1)
nl,i(ωj,p2)

) (25)

Since equal peaks were assumed in the linear regime, H(0)(ωj,p1) = H(0)(ωj,p2). Then, Equation (25)
becomes independent of α3 and can be written as

N∑

i=1

bnl,i

(
H

(1)
nl,i(ωj,p1)−H(1)

nl,i(ωj,p2)
)

= H
(1)
nl (ωj,p2)−H(1)

nl (ωj,p1). (26)
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Enforcing Equation (26) for j = 1, · · · , N yields the following linear system of size N ×N :




∆ω1H
(1)
nl,1 ∆ω1H

(1)
nl,2 . . . ∆ω1H

(1)
nl,N

∆ω2H
(1)
nl,1 ∆ω2H

(1)
nl,2 . . .

...
...

...
. . .

...

∆ωNH
(1)
nl,1 . . . . . . ∆ωNH

(1)
nl,N







bnl,1

bnl,2
...

bnl,N




= −




∆ω1H
(1)
nl

∆ω2H
(1)
nl

...

∆ωNH
(1)
nl



, (27)

in which

∆ωjH = H(ωj,p1)−H(ωj,p2). (28)

Note that the equality of the peaks in the linear regime is not strictly necessary for the absorbers to work
efficiently. Indeed, Equation (26) expresses that the (first-order) effects of all the nonlinearities is the same
at ωj,p1 and ωj,p2. Therefore, if the peaks are only approximately equal in the linear regime (which is the
case with the H2 optimisation), they will remain approximately equal in the nonlinear regime.

Because the frequency response (24) is only accurate to the first order, this approach is a local approach, in
the sense that the obtained results will gradually lose their validity with increasing α3. That is, if either the
forcing amplitude or the nonlinear coefficients become large, the proposed method is likely to fail. For small
α3 however, it is expected that the nonlinear absorbers yield better result than their linear counterparts.

4 Numerical examples

The proposed approach is illustrated with two numerical examples. The frequency response functions were
computed using a continuation procedure coupled with a harmonic balance formalism [18] with five har-
monics.

4.1 Comparison with the Nonlinear Piezoelectric Tuned Vibration Absorber

As a verification of the proposed method, it is compared to the NPTVA proposed by Soltani and Kerschen [9].
In that paper, the nonlinearities in the absorber are chosen according to a principle of similarity as well. Their
coefficients are determined thanks to a first-order HB and a homotopy perturbation method.

A single-degree-of-freedom structure to which a piezoelectric stack is attached (Figure 1) is considered as an
example. A nonlinear cubic spring is attached to the mass as well. The piezoelectric stack is connected to a
shunt circuit in an attempt to mitigate the vibrations. The coupling between the structure and the piezoelectric
material can be characterised by the effective electromechanical coupling factor (EEMCF) defined as [19]

K2
c =

ω2
oc − ω2

sc

ω2
sc

, (29)

where ωoc is the resonance frequency of the structure when the electrodes of the piezoelectric material are
open-circuited and ωsc is the resonance frequency of the structure when these electrodes are short-circuited.
In this example, the numerical parameters are given in Table 1. The EEMCF is varied between 0.05 and 0.6.
The optimal inductance and resistance of the linear piezoelectric shunt are computed following [11]. The
nonlinear impedances are implemented with cubic capacitances. The electromechanical equations are given
by
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m k kp,oc knl Cε
p

1 kg 0.5 N/m 0.5 N/m 1 N/m3 1 F

Table 1: Numerical parameters of the single-degree-of-freedom structure.





mẍ+ (k + kp,oc)x+ knlx
3 − θpq = f

Lq̈ +Rq̇ +
1

Cε
p

q + Cnlq
3 − θpx = 0

. (30)

The nonlinear coefficients computed using the method in [9] and the method proposed in Subsection 3 are
compared.
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Figure 4: Comparison of the NPTVA (—) and the proposed method (− · −): nonlinear coefficients (a) and
relative difference between the coefficients (b).

Figure 4 shows a comparison between the results of the proposed method and the NPTVA (a forcing ampli-
tude of 10−3 N was chosen to account for the local nature of the proposed approach, and a modal damping
of 1% in the host structure was assumed). A good agreement between the computed nonlinear coefficients is
observed, with up to 3% relative difference for the highest coupling factor (the coefficient m3 of the NPTVA
as given in [9] has to be multiplied by (L/m)2 to have consistent units). For realistic EEMCFs, that is
Kc ≤ 0.2, the relative difference is less than 1%.

Next, the EEMCF is fixed to Kc = 0.2 and the forcing amplitude is varied. Figure 5 shows the nonlinear
frequency responses functions (NFRF) of the system with only a linear absorber, with the NPTVA and
with the absorber tuned according to Subsection 3. As the hardening effects of the nonlinearity inside
the structure become more prominent, the linear absorber is progressively detuned and loses its efficiency.
Around f = 0.0416, a detached resonance curve (DRC) merges with the rightmost peak of the NFRF,
leading to the possibility of high-amplitude vibrations over a broad frequency range. On the other hand, the
nonlinear absorbers are able to mitigate the vibrations over a larger range of forcing amplitudes. Indeed,
the difference between the maximum of the receptance with and without nonlinear absorbers is 15.73 dB at
f = 0.05.

4.2 Two-degree-of-freedom structure

To demonstrate the ability of the method to damp multiple modes, a two-degree-of-freedom structure shown
in Figure 6 is studied. A cubic spring knl attached to mass 1 is considered to introduce nonlinear effects. The
characteristics of the structure as well as those of the piezoelectric stack are given in Table 2 (where Kc,1
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Figure 5: Comparison of the NPTVA and the proposed method: nonlinear frequency response function at
f = 0.025 N (a) and f = 0.05 N (b): linear absorbers (—: stable solution, - - : unstable solution, •: fold

bifurcation), NPTVA (—) and the proposed approach (− · −).

and Kc,2 are the EEMCFs of modes 1 and 2, respectively). Damping is also introduced to have 1% modal
damping on both modes in the primary structure. The structure is subjected to a harmonic forcing located on
the first mass and the displacement is measured as this same mass.

m1 m2
kp,oc

k1

knl

k2 k3

Figure 6: Two-degree-of-freedom structure.

m1 m2 k1 k2 k3 knl kp,oc Cε
p Kc,1 Kc,2

1 kg 1 kg 5 N/m 5 N/m 1 N/m 1 N/m3 1 N/m 1 F 0.0774 0.0567

Table 2: Numerical parameters of the two-degree-of-freedom structure.

A two-mode current flowing shunt circuit is connected to the electrodes of the piezoelectric stack. The
choice of the filter capacitances was made empirically so as to obtain approximately the same amplitude
on both modes. The inductances values are initialised using the simple rule in [6]. The inductances and
resistances are then tuned using the two-step algorithm described in Subsection 2.4. The obtained parameters
are gathered in Table 3. The amplitude reductions of modes 1 and 2 are 16.9 dB and 18.6 dB respectively.

Figure 7 illustrates the different steps of the design algorithm with the receptance of the structure in the linear
regime. It can be seen that the initialisation of the inductances provides a circuit whose resonance frequencies
are not correctly tuned to those of the structure. After a correction of the inductances, the resistances are
optimised to minimise the H2 norm of the receptance.

Nonlinear cubic capacitances are then added in each branch of the current flowing shunt circuit. Their
coefficient is determined using Equation (27) and is given in Table 3. The NFRFs of the structure with and
without nonlinearities in the absorber are compared in Figure 8 (mode 1) and Figure 9 (mode 2) for various
forcing amplitudes.

Once again, the nonlinear absorbers are able to mitigate the vibration amplitude over a broader range of
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Figure 7: Steps of the design algorithm for the linear absorbers: open-circuit piezoelectric stack (—), initial
guess for the inductances of the undamped circuit (- -), optimised inductances of the undamped circuit

(− · −) and final design (—).

C1 C2 R1 R2 L1 L2 Cnl,1 Cnl,2

5 F 0.25 F 0.0316 Ω 0.0438 Ω 0.3244 H 0.3759 H 0.0169 V/C3 0.1524 V/C3

Table 3: Parameters of the current flowing shunt circuit.
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Figure 8: NFRFs of the structure with linear absorbers (a) and with nonlinear absorbers (b), close-up on
mode 1: linear FRF (—), f1 = 0.1 N (—), f1 = 0.2 N (—), f1 = 0.3 N (—: stable solution, - - : unstable

solution, •: fold bifurcation).

forcing amplitudes. Figure 8 shows that the proposed method yields nonlinear absorbers with fair efficiency
even though the peaks resulting from the linear design are not perfectly equal in amplitude. In Figure 9(a), a
DRC coalesced with the rightmost peak of mode 2 can be observed. The use of nonlinear absorbers delays
this undesirable phenomenon to higher forcing amplitudes. A global view of the NFRF is given in Figure 10.
This shows that both nonlinear resonances are damped simultaneously by the nonlinear absorbers.

The nonlinear absorbers are not fail-proof, though. At f1 = 0.3265 N, a DRC merges with the rightmost
peak of mode 2 with the nonlinear absorbers. At this point, the receptance amplitude around the frequency of
mode 2 becomes comparable whether or not nonlinearities are used in the absorbers, as can be seen in Fig-
ure 11. This phenomenon bears a strong resemblance with that of the nonlinear tuned vibration absorber [20].
Nevertheless, mode 1 is still correctly damped with nonlinear absorbers.
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Figure 9: NFRFs of the structure with linear absorbers (a) and with nonlinear absorbers (b), close-up on
mode 2: linear FRF (—), f1 = 0.1 N (—), f1 = 0.2 N (—), f1 = 0.3 N (—: stable solution, - - : unstable

solution, •: fold bifurcation, H: Neimark-Sacker bifurcation).
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Figure 10: NFRF of the structure at f1 = 0.3 N with linear absorbers (—: stable solution, - -: unstable
solution, •: fold bifurcation, H: Neimark-Sacker bifurcation) and with nonlinear absorbers (− · − : stable

solution, - -: unstable solution,•: fold bifurcation).

5 Conclusion

In this paper, a new methodology for tuning multimodal nonlinear piezoelectric vibration absorbers was
proposed. A current flowing shunt circuit proposed in the literature was chosen to implement a multimodal
absorber. A model of the piezoelectric structure connected to a current flowing shunt circuit was proposed,
and this allowed us to revisit the tuning methodology of the shunt circuit. This methodology consists in a two-
step optimisation algorithm. The inductances are first optimised to yield the correct resonance frequencies,
and then the resistances are optimized to minimise the H2 norm of the receptance.

The design of nonlinear multimodal vibration absorbers is inspired from a principle of similarity. Nonlin-
earities are introduced in the branches of the shunt circuit to mimic the behaviour of the structure in the
nonlinear regime. Their mathematical form is chosen to be identical as these in the primary structure. Their
coefficients are then found by imposing equal peaks in the nonlinear frequency response function.

The proposed design methodology was shown to be efficient both when a single mode and when two modes
are to be damped. Namely, the range of forcing amplitudes in which the absorbers are efficient is substantially
increased when properly tuned nonlinearities are used in the absorbers. Eventually, for very high forcing
amplitudes, the nonlinear absorbers also fail and at that point the advantage of using nonlinearities becomes
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Figure 11: NFRFs of the structure at f1 = 0.3265 N with linear absorbers (—: stable solution, - -: unstable
solution, •: fold bifurcation, H: Neimark-Sacker bifurcation) and with nonlinear absorbers (− · − : stable

solution, - -: unstable solution,•: fold bifurcation, H: Neimark-Sacker bifurcation).

less obvious.

The design of the nonlinearities relies on the presence of equal (or nearly equal) peaks in the linear receptance
of the structure. Therefore, the design of linear absorbers has a strong impact on that of the nonlinearities.
Future work for improving the proposed design methodology may involve choosing the inductances and the
resistances in the objective of minimising the H∞ norm of the receptance (and no longer its H2 norm).
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[7] B. Lossouarn, M. Aucejo, J.-F. Deü, Multimodal coupling of periodic lattices and application to rod
vibration damping with a piezoelectric network, Smart Materials and Structures, Vol. 24, No. 4, (2015),
p. 045018.

[8] G. Habib, G. Kerschen, A principle of similarity for nonlinear vibration absorbers, Physica D: Non-
linear Phenomena, Vol. 332, (2016), pp. 1–8.

[9] P. Soltani, G. Kerschen, The nonlinear piezoelectric tuned vibration absorber, Smart Materials and
Structures, Vol. 24, No. 7, (2015), p. 075015.
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