Beccaria, M.; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States, Department for Pharmaceutical and Pharmacological Sciences, KU Leuven–University of Leuven, Leuven, 3000, Belgium
Franchina, Flavio ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Nasir, M.; Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States
Mellors, T.; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
Hill, J. E.; Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States
Purcaro, Giorgia ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Chimie des agro-biosystèmes
Language :
English
Title :
Investigation of mycobacteria fatty acid profile using different ionization energies in GC–MS
Gross JH. Mass spectrometry. 3rd ed. Switzerland: Structure. Springer; 2017
Fan H, Smuts J, Bai L, Walsh P, Armstrong DW, Schug KA. Gas chromatography-vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters. Food Chem. 2015;194:265–71
Santos IC, Smuts J, Choi WS, Kim Y, Kim SB, Schug KA. Analysis of bacterial FAMEs using gas chromatography – vacuum ultraviolet spectroscopy for the identification and discrimination of bacteria. Talanta. 2018;182:536–43
Munson B. Chemical ionization mass spectrometry. Anal Chem. 1977;49:772A–5A
Munson MSB, Field FH. Chemical ionization mass spectrometry. I. General introduction. J Am Chem Soc. 1966;88:2621–30
Leinweber P, Schulten HR. Advances in analytical pyrolysis of soil organic matter. J Anal Appl Pyrolysis. 1999;49:359–83
Fenselau C, Wang SY, Brown P. Field ionization mass spectra of photopolymers of thymine. Tetrahedron. 1970;26:5923–7
Hanley L, Zimmermann R. Light and molecular ions: the emergence of vacuum UV single-photon ionization in MS. Anal Chem. 2009;81:4174–82
Boesl U. Multiphoton excitation and mass-selective ion detection for neutral and ion spectroscopy. J Phys Chem. 1991;81:2949–62
Maccoll A. Ion enthalpies and their application in mass spectrometry. Org Mass Spectrom. 1982;17:1–9
Maccoll A. Low energy, low temperature mass spectra. Org Mass Spectrom. 1986;21:601–11
Alam MS, Stark C, Harrison RM. Using variable ionization energy time-of-flight mass spectrometry with comprehensive GC×GC to identify isomeric species. Anal Chem. 2016;88:4211–20
Ludányi K, Dallos A, Kühn Z, Vékey K. Mass spectrometry of very large saturated hydrocarbons. J Mass Spectrom. 1999;34:264–7
Onigbinde A, Nicol G, Munson B. Gas chromatography/mass spectrometry of polyethylene glycol oligomers. Eur J Mass Spectrom. 2001;7:279–91
Tranchida PQ, Aloisi I, Giocastro B, Mondello L. Current state of comprehensive two-dimensional gas chromatography-mass spectrometry with focus on processes of ionization. TrAC - Trends Anal Chem. 2018;105:360–6
Müller KD, Husmann H, Nalik HP, Schomburg G. Trans-esterification of fatty acids from microorganisms and human blood serum by trimethylsulfonium hydroxide (TMSH) for GC analysis. Chromatographia. 1990;30:245–8
Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak GXCMS. processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching. and identification. Anal Chem. 2006;78:779–87
Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in1H NMR metabonomics. Anal Chem. 2006;78:4281–90
Mann HB, Whitney DR. On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat. 1947;18:50–60
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300
Christie W, Han X. Lipid analysis - isolation, separation, identification and lipidomic analyse. 4th ed. Bridgwater: Oily Press; 2010
Müller K-D, Nalik HP, Schmid EN, Husmann H, Schomburg G. Fast identification of mycobacterium species by GC analysis with trimethylsulfonium hydroxide (TMSH) for transesterification. J High Resolut Chromatogr. 1993;16:161–5
Nandedkar a K. Fatty acid composition of mycobacterial lipids as an index of pathogenicity. J Natl Med Assoc. 1982;74:1191–3
Ozbek A, Aktas O. Identification of three strains of mycobacterium species isolated from clinical samples using fatty acid methyl ester profiling. J Int Med Res. 2003;31:133–40
Purcaro G, Tranchida PQ, Dugo P, La Camera E, Bisignano G, Conte L, et al. Characterization of bacterial lipid profiles by using rapid sample preparation and fast comprehensive two-dimensional gas chromatography in combination with mass spectrometry. J Sep Sci. 2010;33:2334–40
David F, Tienpont B, Sandra P. Chemotaxonomy of bacteria by comprehensive GC and GC–MS inelectron impact and chemical ionisation mode. J Sep Sci. 2008;31:3395–403
Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Tech. Note 101. 2001
Kruskal WH, Wallis WA. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952;47:583–621
Leao SC, Tortoli E, Paul Euzé J, Garcia MJ. Proposal that Mycobacterium massiliense and Mycobacterium bolletii be united and reclassified as Mycobacterium abscessus subsp. bolletii comb. nov., designation of Mycobacterium abscessus subsp. abscessus subsp. nov. and emended description of Mycobacteri. Int J Syst Evol Microbiol. 2011;61:2311–3
Tranchida PQ, Franchina FA, Dugo P. Mondello L. A flow-modulated comprehensive gas chromatography-mass spectrometry method for the analysis of fatty acid profiles in marine and biological samples. J Chromatogr A. 2012;1255:171–6
McLafferty FW, Turecek F. Interpretation of mass spectra. 4th ed. University Science Books; 1993
Christiansen K, Mahadevan V, Viswanathan CV, Holman RT. Mass spectrometry of long-chain aliphatic aldehydes, dimethyl acetals and alk-1-enyl ethers. Lipids. 1969;4:421–7