Verziu, M.; Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bdul Regina Elisabeta, 4-12, Bucharest, 030016, Romania, Institute of Organic Chemistry ‘C. D. Nenitzescu’ of Romanian Academy, 202 B Spl. Independentei, P. O. Box 35-108, Bucharest, Romania
Tirsoaga, A.; Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bdul Regina Elisabeta, 4-12, Bucharest, 030016, Romania, Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bdul Regina Elisabeta, 4-12, Bucharest, 030016, Romania
Cojocaru, B.; Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, Bdul Regina Elisabeta, 4-12, Bucharest, 030016, Romania
Bucur, C.; National Institute of Materials Physics, Atomistilor 105b, Magurele, Ilfov, 077125, Romania
Tudora, B.; Central Customs Laboratory, National Customs Authority, Street Vulturilor, no. 2, Bucharest, 030855, Romania
Richel, Aurore ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > SMARTECH
Aguedo, Mario ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > SMARTECH
Samikannu, A.; Technical Chemistry, Department of Chemistry, Chemical-Biological Centre, Umeå University, Umeå, SE-901 87, Sweden
Mikkola, J. P.; Technical Chemistry, Department of Chemistry, Chemical-Biological Centre, Umeå University, Umeå, SE-901 87, Sweden, Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Åbo-Turku, FI-20500, Finland
Language :
English
Title :
Hydrogenolysis of lignin over Ru-based catalysts: The role of the ruthenium in a lignin fragmentation process
Jia, S., Cox, B.J., Guo, X., Zhang, Z.C., Ekerdt, J.G., Hydrolytic cleavage of β-O-4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides. Ind. Eng. Chem. Res. 50 (2011), 849–855.
Patil, P.T., Armbruster, U., Richter, M., Martin, A., Heterogeneously catalyzed hydroprocessing of organosolv lignin in sub- and supercritical solvents. Energy Fuel 25 (2011), 4713–4722.
Deng, H., Lin, L., Sun, Y., Pang, C., Zhuang, J., Ouyang, P., Li, Z., Liu, S., Perovskite-type oxide LaMnO3: an efficient and recyclable heterogeneous catalyst for the wet aerobic oxidation of lignin to aromatic aldehydes. Catal. Lett. 126 (2008), 106–111.
Azadi, P., Inderwildi, O.R., Farnood, R., King, D.A., Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew. Sustainable Energy Rev. 21 (2013), 506–523.
Yan, N., Zhao, C., Dyson, P.J., Wang, C., Liu, L.T., Kou, Y., Selective degradation of wood lignin over noble-metal catalysts in a two-step process. ChemSusChem 1 (2008), 626–629.
Mullen, C.A., Boateng, A.A., Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Process. Technol. 91 (2010), 1446–1458.
Haensel, T., Comouth, A., Lorenz, P., Ahmed, S.I.-U., Krischok, S., Zydziak, N., Kauffmann, A., Schaefer, J.A., Pyrolysis of cellulose and lignin. Appl. Surf. Sci. 255 (2009), 8183–8189.
Saisu, M., Sato, T., Watanabe, M., Adschiri, T., Arai, K., Conversion of lignin with supercritical water-phenol mixtures. Energy Fuels 17 (2003), 922–928.
Torr, K.M., van de Pas, D.J., Cazeils, E., Suckling, I.D., Mild hydrogenolysis of in-situ and isolated Pinus radiata lignins. Bioresour. Technol. 102 (2011), 7608–7611.
Araújo, J.D.P., Grande, C.A., Rodrigues, A.E., Vanillin production from lignin oxidation in a batch reactor. Chem. Eng. Res. Des. 88 (2010), 1024–1032.
Deng, H., Lin, L., Sun, Y., Pang, C., Zhuang, J., Ouyang, P., Li, Z., Liu, S., Perovskite-type oxide LaMnO3: an efficient and recyclable heterogeneous catalyst for the wet aerobic oxidation of lignin to aromatic aldehydes. Catal. Lett. 126 (2008), 106–111.
Tang, Z., Zhang, Y., Guo, Q., Catalytic hydrocracking of pyrolytic lignin to liquid fuel in supercritical ethanol. Ind. Eng. Chem. Res. 49 (2010), 2040–2046.
Yan, N., Dyson, P.J., Transformation of biomass via the selective hydrogenolysis of CO bonds by nanoscale metal catalysts. Curr. Opin. Chem. Eng. 2 (2013), 178–183.
Ye, Y., Zhang, Y., Fan, J., Chang, J., Selective production of 4-ethylphenolics from lignin via mild hydrogenolysis. Bioresour. Technol. 118 (2012), 648–651.
Song, Q., Wang, F., Xu, J., Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts. Chem. Commun. 48 (2012), 7019–7021.
Wang, X., Rinaldi, R., Bifunctional Ni catalysts for the one-pot conversion of Organosolvlignin into cycloalkanes. Catal. Today 269 (2016), 48–55.
Zhang, J., Teo, J., Chen, X., Asakura, H., Tanaka, T., Teramura, K., Yan, N., A series of NiM (M = Ru, Rh, and Pd) bimetallic catalysts for effective lignin hydrogenolysis in water. ACS Catal. 4 (2014), 1574–1583.
Warner, G., Hansen, T.S., Riisager, A., Beach, E.S., Barta, K., Anastas, P.T., Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol. Bioresour. Technol. 161 (2014), 78–83.
Garrona, A., Maksoud, W.A., Larabia, C., Arquillièrea, P., Szetoa, K.C., Walter, J.-J., Santinia, C.C., Direct thermo-catalytic transformation of pine wood into lowo xygenated fuel: influence of the support. Catal. Today 255 (2015), 75–79.
Sharma, S.K., Sidhpuria, K.B., Jasra, R.V., Ruthenium containing hydrotalcite as a heterogeneous catalyst for hydrogenation of benzene to cyclohexane. J. Mol. Catal. A: Chem. 335 (2011), 65–70.
Kima, J.K., Leea, J.K., Kanga, K.H., Song, J.C., Song, I.K., Selective cleavage of CO bond in benzyl phenyl ether to aromaticsover Pd–Fe bimetallic catalyst supported on ordered mesoporous carbon. Appl. Catal. A 498 (2015), 142–149.
He, J., Zhao, C., Lerch, J.A., Ni-catalyzed cleavage of aryl ethers in the aqueous phase. J. Am. Chem. Soc. 134 (2012), 20768–20775.
Zhang, J., Asakura, H., van Rijn, J., Yang, J., Duchesne, P., Zhang, B., Chen, X., Zhang, P., Saeys, M., Yan, N., Highly efficient, NiAu-catalyzed hydrogenolysis of lignin into phenolic chemicals. Green Chem. 16 (2014), 2432–2437.
Vanderghem, C., Richel, A., Jacquet, N., Blecker, C., Paquot, M., Impact of formic/acetic acid and ammonia pre-treatments on chemical structure and physicochemical properties of Miscanthus x giganteus lignins. Polym. Degrad. Stab. 96 (2011), 1761–1770.
Obalova, L., Jiratova, K., Kovanda, F., Valaskova, M., Balabanova, J., Pacultova, K., Structure–activity relationship in the N2O decomposition over Ni-(Mg)-Al and Ni-(Mg)-Mn mixed oxides prepared from hydrotalcite-like precursors. J. Mol. Catal. A: Chem. 248 (2006), 210–219.
Yan, Q.G., Wub, T.H., Weng, W.Z., Toghiani, H., Toghiani, R.K., Wan, H.L., Pittman, C.U., Jr, Partial oxidation of methane to H2 and CO over Rh/SiO2 and Ru/SiO2 catalysts. J. Catal. 226 (2004), 247–259.
Shannon, R.D., Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides. Acta Crystallogr. A: Found. Crystallogr. 32 (1976), 751–767.
Kumar, N., Maki-Arvela, P., Hajek, J., Salmi, T., Murzin, D.Yu., Heikkila, T., Laine, E., Laukkanen, P., Vayrynen, J., Physico-chemical and catalytic properties of Ru–MCM-41 mesoporous molecular sieve catalyst: influence of Ru modification methods. Micropor. Mesopor. Mater. 69 (2004), 173–179.
Sharma, K.S., Parikhb, P.A., Jasra, R.V., Ruthenium containing hydrotalcite as a solid base catalyst for >C C< double bond isomerization in perfumery chemicals. J. Mol. Catal. A-Chem. 17 (2010), 27–33.
Luo, Z., Zheng, Z., Wang, Y., Sun, G., Jiang, H., Zhao, C., Hydrothermally stable Ru/HZSM-5-catalyzed selective hydrogenolysis of lignin-derived substituted phenols to bio-arenes in water. Green Chem. 18 (2016), 5845–5858.
Okal, J., Zawadzki, M., Catalytic combustion of butane on Ru/g-Al2O3 catalysts. Appl. Catal. B 89 (2009), 22–32.
Ananth, A., Gregory, D.H., Mok, Y.S., Synthesis, characterization and shape-dependent catalytic CO oxidation performance of ruthenium oxide nanomaterials: influence of polymer surfactant. Appl. Sci. 5 (2015), 344–358.
Prinetto, F., Ghiotti, G., Durand, R., Tichit, D., Investigation of acid-base properties of catalysts obtained from layered double hydroxides. J. Phys. Chem. B 104 (2000), 11117–11126.
Di Cosimo, J.I., Apesteguıa, C.R., Gines, M.J.L., Iglesia, E., Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOx catalysts. J. Catal. 190 (2000), 261–275.
Casenave, S., Martinez, H., Guimon, C., Auroux, A., Hulea, V., Cordoneanu, A., Dumitriu, E., Acid-base properties of Mg-Ni-Al mixed oxides using LDH as precursors. Thermochim. Acta 379 (2001), 85–93.
Lin, B., Wei, K., Ma, X., Lin, J., Ni, J., Study of potassium promoter effect for Ru/AC catalysts for ammonia synthesis. Catal. Sci. Technol. 3 (2013), 1367–1374.
Meloni, D., Monaci, R., Solinas, V., Auroux, A., Dumitriu, E., Characterisation of the active sites in mixed oxides derived from LDH precursors by physico-chemical and catalytic techniques. Appl. Catal. A 350 (2008), 86–95.
Lashdafa, M., Tiittab, M., Venalainen, T., Osterholm, H., Krause, A.O.I., Ruthenium on beta zeolite in cinnamaldehyde hydrogenation. Catal. Lett. 94 (2004), 7–14.
Nagai, M., Koizumi, K., Omi, S., NH3-TPD and XPS studies of Ru/Al2O3 catalyst and HDS activity. Catal. Today 35 (1997), 393–405.
Skoufaa, Z., Xantria, G., Heracleousb, E., Lemonidoua, A.A., A study of Ni–Al–O mixed oxides as catalysts for the oxidativeconversion of ethane to ethylene. Appl. Catal. A 471 (2014), 107–117.
Abate, S., Barbera, K., Giglio, E., Deorsola, F., Bensaid, S., Perathoner, S., Pirone, R., Centi, G., Synthesis, characterization and activity pattern of Ni-Al hydrotalcite catalysts in CO2 methanation. Ind. Eng. Chem. Res. 55 (2016), 8299–8308.
Mohaideen, K.K., Kim, W., Koo, K.Y., Yoon, W.L., Highly dispersed Ni particles on Ru/NiAl catalyst derived from layered double hydroxide for selective CO methanation. Catal. Commun. 60 (2015), 8–13.
Morgan, D.J., Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 47 (2015), 1072–1079.
Sarma, D.D., Rao, C.N.R., XPES studies of oxides of second- and third-row transition metals including rare earths. J. Electron Spectrosc. Relat. Phenom. 20 (1980), 25–45.
Shen, J.Y., Adnot, A., Kaliaguine, S., An ESCA study of the interaction of oxygen with the surface of ruthenium. Appl. Surf. Sci. 51 (1991), 47–60.
Satsuma, A., Yanagihara, M., Ohyama, J., Shimizu, K., Oxidation of CO over Ru/Ceria prepared by self-dispersion of Ru metal powder into nano-sized particle. Catal. Today 201 (2013), 62–67.
Chan, S.S., Wachs, I.E., Ln situ laser raman spectroscopy of nickel oxide supported on y-A12O3. J. Catal. 103 (1978), 224–227.
Liu, Y., Huang, F.Y., Li, J.M., Weng, W.Z., Luo, C.R., Wang, M.L., Xia, W.S., Huang, C.J., Wan, H.L., In situ Raman study on the partial oxidation of methane to synthesis gas over Rh/Al2O3 and Ru/Al2O3 catalysts. J. Catal. 256 (2008), 192–203.
Hyuna, Y., Choia, J.Y., Parkb, H.K., Lee, C.S., Synthesis and electrochemical performance of rutheniumoxide-coated carbon nanofibers as anode materials for lithium secondary batteries. Appl. Surf. Sci. 388 (2016), 274–280.
Harvey, D.J., Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2007–2008. Mass Spectrom. Rev. 31 (2012), 183–311.
Nguyen, D.N., Becker, G.W., Riggin, R.M., Protein mass spectrometry: applications to analytical biotechnology. J. Chromatogr. A 705 (1995), 21–45.
Faulstich, K., Worner, K., Brill, H., Engels, J.W.A., Sequencing method for RNA oligonucleotides based on mass spectrometry. Anal. Chem. 69 (1997), 4349–4353.
Nielen, M.W., MALDI time-of-flight mass spectrometry of synthetic polymers. Mass Spectrom. Rev. 18 (1999), 309–344.
Metzger, J.O., Bicke, C., Faix, O., Tuszynski, W., Angermann, R., Karas, M., Strupat, K., Matrix-assisted laser desorption mass spectrometry of lignins. Angew. Chem. Int. Ed. 31 (1992), 762–764.
Bocchini, P., Galletti, G.C., Seraglia, R., Traldi, P., Camarero, S., Martinez, A.T., Matrix-assisted laser desorption/ionization mass spectrometry of natural and synthetic lignin. Rapid Commun. Mass Spectrom. 10 (1996), 1144–1147.
Liu, Q., Li, P., Liu, N., Shen, D., Lignin depolymerization to aromatic monomers and oligomers in isopropanol assisted by microwave heating. Polym. Degrad. Stab. 135 (2017), 54–60.
Bayerbach, R., Nguyen, V.D., Schurr, U., Meier, D., Characterization of water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part III. Molar mass characteristics by SEC, MALDI-TOF-MS LDI-TOF-MS and Py-FIMS. J. Anal. Appl. Pyrolysis 77 (2006), 95–101.
Cole, D.P., Smith, E.A., Lee, Y.J., High-resolution mass spectrometric characterization of molecules on biochar from pyrolysis and gasification of switchgrass. Energy Fuels 26 (2012), 3803–3809.
Hempfling, R., Schulten, H.R., Chemical characterization of the organic mater in forest soils by Curie point pyrolysis-GC/MS and pyrolysis-filed ionization mass spectrometry. Org. Geochem. 15 (1990), 131–145.
van der Hage, E.R.E., Mulder, M.M., Boon, J.J., Structural characterization of lignin polymers by temperature-resolved in-source pyrolysis-mass spectrometry and Curie-point pyrolysis-gas chromatography/mass spectrometry. J. Anal. Appl. Pyrolysis 25 (1993), 149–183.
Brandt, A., Chen, L., van Dongen, B.E., Welton, T., Hallett, J.P., Structural changes in lignins isolated using an acidic ionic liquid water mixture. Green Chem. 17 (2015), 5019–5034.
Li, J., Gellerstedt, G., Improved lignin properties and reactivity by modifications in the autohydrolysis process of aspen wood. Ind. Crops Prod. 27 (2008), 175–181.
Banoub, J., Delmas, G.-H. Jr., Joly, N., Mackenzie, G., Cachet, N., Bouchra, B.-M., Delmas, M., A critique on the structural analysis of lignins and application of novel tandem mass spectrometric strategies to determine lignin sequencing. J. Mass Spectrom. 50 (2015), 5–48.
Morreel, K., Dima, O., Kim, H., Lu, F., Niculaes, C., Vanholme, R., Dauwe, R., Goeminne, G., Inze, D., Messens, E., Ralph, J., Boerjan, W., Mass spectrometry-based sequencing of lignin oligomers. Plant Physiol. 153 (2010), 1464–1478.
Bayerbach, R., Nguyen, V.D., Schurr, U., Meier, D., Characterization of water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part III. Molar mass characteristics by SEC, MALDI-TOF-MS, LDI-TOF-MS and Py-FIMS. J. Anal. Appl. Pyrolysis 77 (2006), 95–101.
Richel, A., Vanderghem, C., Simon, M., Wathelet, B., Paquot, M., Evaluation of matrix-assisted laser desorption/ionization mass spectrometry for second-generation lignin analysis. Anal. Chem. 7 (2012), 79–89.
Tolbert, A., Akinosho, H., Khunsupat, R., Naskar, A.K., Ragauskas, A.J., Characterization and analysis of the molecular weight of lignin for biorefining studies. Biofuels Bioprod. Bioref. 8 (2014), 836–856.
Jacobs, A., Dahlman, O., Absolute molar mass of lignins by size-exclusion chromatography and MALDI-TOF mass spectroscopy. Nord. Pulp Pap. Res. J. 15 (2000), 120–127.
Toledano, A., Serrano, L., Pineda, A., Romero, A.A., Luque, R., Labidi, J., Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis: catalyst screening. Appl. Catal. B: Environ. 145 (2014), 43–55.
Jiang, Y., Li, Z., Tang, X., Sun, Y., Zeng, X., Liu, S., Lin, L., Depolymerization of cellulolytic enzyme lignin for the production of monomeric phenols over raney Ni and acidic zeolite catalysts. Energy Fuels 29 (2015), 1662–1668.
Xiaoa, Z., Li, C., Xiua, J., Wang, X., Williams, C.T., Liang, C., Insights into the reaction pathways of glycerol hydrogenolysis over Cu–Cr catalysts. J. Mol. Catal. A: Chem. 365 (2012), 24–31.
Zakzeski, J., Bruijnincx, P.C.A., Jongerius, A.L., Weckhuysen, B.M., The catalytic valorization of lignin for the production of renewable chemicals. Chem. Rev. 110 (2010), 3552–3599.
Tejado, A., Pena, C., Labidi, J., Echeverria, J.M., Mondragon, I., Physico-chemical characterization of lignins from different sources for use in phenol?formaldehyde resin synthesis. Bioresour. Technol. 98 (2007), 1655–1663.
Parthasarathi, R., Romero, R.A., Redondo, A., Gnanakaran, S., Theoretical study of the remarkably diverse linkages in lignin. J. Phys. Chem. Lett. 2 (2011), 2660–2666.
Chen, H., He, S., Cao, X., Zhang, S., Xu, M., Pu, M., Su, D., Wei, M., Evans, D.G., Duan, X., Ru-cluster-modified Ni surface defects toward selective bond breaking between C-O and C-C. Chem. Mater. 13 (2016), 4751–4761.
Jina, S., Xiao, Z., Li, C., William, C.T., Liang, C., Hydrogenolysis of glycerol over HY zeolite supported Ru catalysts. J. Energy Chem. 23 (2014), 185–192.
Yuan, C., Yao, N., Wang, X., Wang, J., Lv, D., Li, X., The SiO2 supported bimetallic Ni–Ru particles: a good sulfur-tolerant catalyst for methanation reaction. Chem. Eng. J. 260 (2015), 1–10.
Yasuda, H., Yoshimura, Y., Hydrogenation of tetralin over zeolite-supported Pd-Pt catalysts. Catal. Lett. 46 (1997), 43–48.