Abstract :
[en] Ultra-high-performance fiber-reinforced concrete (UHPFRC) is a new generation material
with outstanding mechanical properties and excellent durability. The uses of UHPFRC have, however, been mostly limited to demonstration applications and research projects, due to its perceived high cost and the lack of proven analysis procedures. In the past decade, new design provisions have been proposed in France, Switzerland, Japan, and Australia while a proven numerical modeling approach is still missing. As an effort to contribute to bridging this gap, a numerical modeling approach is established in this research for UHPFRC members. The approach is based on the Diverse Embedment Model within the global
framework of the Disturbed Stress Field Model, a smeared rotating-crack formulation for 2D modeling of concrete structures. This study aims to capture the behavior of UHPFRC by using only a few input parameters. The established model is validated with large-scale tests of UHPFRC beams from the literature. The beams considered incorporate various cross-section and reinforcement details, and exhibit a range of failure modes including flexure and shear. The validation studies, based on comparisons with the experimental results, demonstrate that the proposed modeling approach provides accurate response simulations through simple models with short analysis times.
Scopus citations®
without self-citations
0