groundwater flux; single-well; tracer experiment; FVPDM; mass flux
Abstract :
[en] In many different hydrogeological investigations, quantifying groundwater fluxes is essential but often challenging due to the variability of hydraulic conditions in space and time. Traditional approaches used to estimate groundwater fluxes are based on hydraulic conductivity obtained from field pumping or slug tests that provide only order-of-magnitude estimates and hydraulic gradients that can also vary, especially in areas of active groundwater discharge or pumping.
The Finite Volume Point Dilution Method (FVPDM) is a recently developed applied tracer technology able to measure accurately groundwater fluxes and to monitor continuously their changes with time. We report 10 years of application of the FVPDM in contrasted hydrogeological contexts, from porous alluvial to fractured-rock aquifers, including strong interactions with surface water and contrasting groundwater flow dynamics. The obtained results prove that the FVPDM is able to measure a wide range of groundwater fluxes from a few centimetres per day to hundreds of metres per day. These results also emphases the variability in groundwater fluxes, (1) with time in aquifers influenced by variable hydraulic conditions such as tidal effects and (2) in space where orders of magnitude difference in groundwater fluxes are observed between nearby monitoring wells at a given site.
Preliminary results of continuing work have also shown the potential for the FVPDM approach to be coupled with contaminant specific sensors and with passive sampling technologies to quantify contaminant mass fluxes in the subsurface. Recent developments have also investigated the ability to assess groundwater flow directions at the well scale.
Research Center/Unit :
UEE - Urban and Environmental Engineering - ULiège