Recent advances for monitoring groundwater and contaminants fluxes using single-well applied tracer techniques

P. Jamin¹, Ph. Orban¹, G. Verreydt², F. Cosme³, Serge Brouyère¹

¹ Hydrogeology & Environmental Geology, Urban & Environmental Engineering, University of Liège, Belgium, Tel: +3243662377, Email: Serge.Brouyere@uliege.be

² iFlux – Envision Groundwater in Motion, Belgium

³ Golder Associates, Melbourne, Australia
Need for accurate quantification and monitoring of groundwater and pollutants mass fluxes

However, groundwater flows are complex in space and time ...

Heterogeneity of aquifers
“Remediation hydrogeology has emerged and evolved from an era of “simplified bulk-averages” that was reliant on parameters and steady-state assumptions, to our current period where we collect site-specific hydrogeologic data at very high resolution and consider the importance of transient, time-dependent behavior.” Suthersan et al., GW Monit. Remed. 2016

Nearby pumping wells
“The change of pumping rate at the nearby well induced changes in the groundwater flow velocity that were recorded by continuous groundwater flux measurement.” Jamin et al., J. of Contam. Hydrol. 2015

GW – Surface water interaction
“Darcy fluxes change continuously in time because of frequent changes in the difference of head between the river and its alluvial aquifer.” Batlle-Aguilar, PhD thesis. 2001

Tidal effects
“The tidal oscillations [...] have an influence on regional groundwater flow.” Ataie-Ashtiani et al., Hydrological Processes. 2001
The Finite Volume Point Dilution Method (FVPDM): basic setup

Key difference: the tracer is continuously injected at a low injection rate
The Finite Volume Point Dilution Method (FVPDM): basic setup

Calculated concentration evolution [Brouyère et al. 2008]:

\[C_w(t) = \frac{Q_{inj} C_{inj} - (Q_{inj} C_{inj} - Q_{out} C_{w,0}) \exp \left(-\frac{Q_{out}}{V_w} (t - t_0) \right)}{Q_{out}} \]
FVPDM applications in different contexts: from open piezometers in loose sediments to packer systems in fractured rocks

GW discharge to a river from a polluted alluvial aquifer

Fractured granite aquifer in Brittany (France)

Variable pumping rate at B2
Various FVPDM with a packer in B1
\[\rightarrow \text{Fracture connectivity and flow rate} \]

Further reading: Brouyère et al. JCH (2008)

Further reading: Jamin et al. JCH (2015)
FVPDM potential: monitoring of variable GW fluxes

Constant injection of tracer and mixing during the monitoring time

Tracer concentration in the tested piezometer varies according to the GW flux (more/less dilution)
Case study 3 in Belgium: monitoring variations in GW fluxes induced by pumping operations in a neighboring abstraction well

Double-screened piezometer used to perform 2 simultaneous FVPDM tests during the pumping operations

Further reading:
P. Jamin & S. Brouyère, JCH (July 2018)
Case study 3 in Belgium: monitoring variations in GW fluxes induced by pumping operations in a neighboring abstraction well

Pumping test results

- **Pz19_UP**
 - 0.35 m/d without pumping
 - 9.64 m/d at max pumping

- **Pz19_LOW**
 - 52 m/d without pumping
 - 321 m/d at max pumping

FVPDM results

- **FVPDM results**: different concentration evolutions → different Darcy fluxes!
 - **Pz19_UP**
 - 0.35 m/d without pumping
 - 9.64 m/d at max pumping
 - **Pz19_LOW**
 - 52 m/d without pumping
 - 321 m/d at max pumping
Case study 4 in Australia: Groundwater pollution under an industrial warf along an estuary (heavy metals)

- Coastal aquifer connected to tidal estuary -> complex groundwater flow
- Heavy metal contamination of GW (Mn, Zn, Cd, Pb) -> risk for estuarian ecosystems
- Continuous FVPDM monitoring for 48 hours (4 tide cycles) in 7 piezometers
- GW sampling for HM concentrations
Case study 4 in Australia: Groundwater pollution under an industrial warf along an estuary (heavy metals)

GW fluxes coming from upgradient are so important that we observed no inversion of GW flow during high river level.

+ calculation of cadmium mass fluxes to the estuary based on FVPDM groundwater fluxes and Cd concentrations in groundwater.
FVPDM: Conclusions and perspectives

- FVPDM able to monitor GW fluxes in very different geological environments (loose sediments to fractured rocks), experimental setups (open boreholes or packer systems) and drivers (transient GW flows, tidal effects ...)

- FVPDM captures small and fast changes in GW fluxes, from few cm/day to hundreds m/d.

- Coupled to measurements of concentrations in contaminants, FVPDM able to deliver useful estimates of contaminant mass fluxes

- Perspectives
 - Full coupling of FVPDM and contaminant monitoring
 - Directional FVPDM
Any questions?

See poster on FVPDM experiments performed under a permafrost layer in Poster session T3 this afternoon

Groundwater Quality 2019
The next IAHS conference on Groundwater Quality (**GQ 2019**) will be held in Liège (Belgium) on 9-12 September 2019!
With the support of IAH, UK CL:AIRE and EU H2020 ITN iNSPIRATION

More information: aimontefiore.org/GQ2019
Contact: c.dizier@aim-association.org – serge.brouyere@uliege.be
Further reading on FVPDM