Niyonzima, Innocent; Department of Mechanical Engineering, Columbia University, New York, NY, United States
Sabariego, Ruth Vazquez; Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium
Dular, Patrick ; Department of Electrical Engineering and Computer Science, Universite de Liege, Liege, Belgium
Jacques, Kevin ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Geuzaine, Christophe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)
Language :
English
Title :
Multiscale finite element modeling of nonlinear magnetoquasistatic problems using magnetic induction conforming formulations
Publication date :
2018
Journal title :
Multiscale Modeling and Simulation
ISSN :
1540-3459
eISSN :
1540-3467
Publisher :
Society for Industrial and Applied Mathematics Publications
Volume :
16
Issue :
1
Pages :
300-326
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif Tier-1 supercomputer
Funders :
KU Leuven - Katholieke Universiteit Leuven F.R.S.-FNRS - Fonds de la Recherche Scientifique MSU - Michigan State University Columbia University AIPS - Australian Institute of Policy and Science
A. Abdulle, The finite element heterogeneous multiscale method: A computational strategy for multiscale PDEs, in Multiple Scales Problems in Biomathematics, Mechanics, Physics and Numerics, GAKUTO Internat. Ser. Math. Sci. Appl. 31, Gakkōtosho, Tokyo, 2009, pp. 133-181.
A. Abdulle and W. E, Finite difference heterogeneous multi-scale method for homogenization problems, J. Comput. Phys., 191 (2003), pp. 18-39, https://doi.org/10.1016/S0021-9991(03)00303-6.
R. Acevedo and G. Loaiza, A fully-discrete finite element approximation for the eddy currents problem, Ing. Cienc., 9 (2013), pp. 111-145.
F. Bachinger, U. Langer, and J. Schöberl, Numerical analysis of nonlinear multiharmonic eddy current problems, Numer. Math., 100 (2005), pp. 593-616.
M. Belkadi, B. Ramdane, D. Trichet, and J. Fouladgar, Non linear homogenization for calculation of electromagnetic properties of soft magnetic composite materials, IEEE Trans. Magn., 45 (2009), pp. 4317-4320.
A. Benabou, S. Clénet, and F. Piriou, Comparison of Preisach and Jiles-Atherton models to take into account hysteresis phenomenon for finite element analysis, J. Magn. Magn. Mater., 261 (2003), pp. 305-310.
A. Bensoussan, J.-L. Lions, and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, AMS, Providence, RI, 2011.
A. Bossavit, Électromagnétisme, en vue de la modélisation, Springer, Berlin, 1993.
A. Bossavit, Effective penetration depth in spatially periodic grids: A novel approach to homogenization, in Proceedings of the International Symposium on Electromagnetic Compatibility, 1994, pp. 859-864.
A. Bossavit, Homogenizing spatially periodic materials with respect to Maxwell equations: Chiral materials by mixing simple ones, in Proceedings of ISEM, 1996, pp. 564-567.
A. Bossavit, Computational Electromagnetism. Variational Formulations, Edge Elements, Complementarity, Academic Press, New York, 1998.
O. Bottauscio, V. Chiado Piat, M. Chiampi, M. Codegone, and A. Manzin, Nonlinear homogenization technique for saturable soft magnetic composites, IEEE Trans. Magn., 44 (2008), pp. 2955-2958.
O. Bottauscio, M. Chiampi, and A. Manzin, Multiscale modeling of heterogeneous magnetic materials, Int. J. Numer. Model., 27 (2014), pp. 373-384.
O. Bottauscio and A. Manzin, Comparison of multiscale models for eddy current computation in granular magnetic materials, J. Comput. Phys., 253 (2013), pp. 1-17.
A. Braides, Γ-convergence for Beginners, Vol. 22, Clarendon Press, Oxford, 2002.
L. Brassart, I. Doghri, and D. L., Homogenization of elasto-plastic composites coupled with a nonlinear finite element analysis of the equivalent inclusion problem, Int. J. Solids Struct., 47 (2010), pp. 716-729.
F. Brezzi, L. P. Franca, T. J. R. Hughes, and A. Russo, b = g, Comput. Methods Appl. Mech. Engrg., 145 (1997), pp. 329-339.
D. Cioranescu, A. Damlamian, and G. Griso, Periodic unfolding and homogenization, C.R. Acad. Sci. Paris Ser. I, 335 (2002), pp. 99-104.
D. Cioranescu, P. Donato, and R. Zaki, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), pp. 1585-1620.
R. Corcolle, Détermination de Lois de Comportment Couplé par des Techniques d'Homogénéisation: Application aux Matériaux du Génie Electrique, Ph.D. thesis, Universite Paris-Sud XI, 2009.
G. Dal Maso, Introduction to Γ-Convergence, Birkhauser, Basel, Switzerland, 1993.
E. De Giorgi, G-operators and Γ-convergence, in Proceedings of the International Congress of Mathematicians, 1984, pp. 1175-1191.
F. Delincé, Modélisation des Régimes Transitoires dans les Systèmes Comportant des Matériaux Magnétiques Non-Linéaires et Hystérétiques, Ph.D. thesis, Université de Liège, 1994.
E. Deriaz and V. Perrier, Orthogonal Helmholtz decomposition in arbitrary dimension using divergence-free and curl-free wavelets, Appl. Comput. Harmon. Anal., 26 (2009), pp. 249-269.
P. Dular, P. Kuo-Peng, C. Geuzaine, N. Sadowski, and J. P. A. Bastos, Dual magnetodynamic formulations and their source fields associated with massive and stranded inductors, IEEE Trans. Magn., 36 (2000), pp. 1293-1299.
W. E, Analysis of the heterogeneous multiscale method for ordinary differential equations, Comm. Math. Sci., 1 (2003), pp. 423-436.
W. E, Principles of Multiscale Modeling, Cambridge University Press, Cambridge, 2011.
W. E and B. Engquist, The heterogeneous multiscale methods, Commun. Math. Sci., 1 (2003), pp. 87-132.
W. E and B. Engquist, Multiscale modeling and computation, Notices Amer. Math. Soc., 50 (2003), pp. 1062-1070.
W. E, B. Engquist, and Z. Huang, Heterogeneous multiscale method: A general methodology for multiscale modeling, Phys. Rev. B, 67 (2003), 092101, https://doi.org/10.1103/PhysRevB.67.092101.
W. E, B. Engquist, X. Li, W. Ren, and E. Vanden-Eijnden, Heterogeneous multiscale methods: A review, Commun. Comput. Phys., 3 (2007), pp. 367-450.
Y. Efendiev, T. Hou, and V. Ginting, Multiscale finite element methods for nonlinear partial differential equations, Commun. Math. Sci., 2 (2004), pp. 553-589.
I. Ekeland and R. Temam, Analyse convexe et problèmes variationnelles, Dunod, Paris, 1974.
M. El Feddi, Z. Ren, A. Razek, and A. Bossavit, Homogenization technique for Maxwell equations in periodic structure, IEEE Trans. Magn., 33 (1997), pp. 1382-1385.
L. C. Evans, Partial Differential Equations, AMS, Providence, RI, 2010.
M. G. D. Geers, V. G. Kouznetsova, and Brekelmans, Gradient-enhanced computational homogenization for the micro-macro scale transition, J. Physique IV, 11 (2001), pp. 5145-5152.
J. Gyselinck, P. Dular, N. Sadowski, J. Leite, and J. P. A. Bastos, Incorporation of a Jiles-Atherton vector hysteresis model in 2-D FE magnetic computations, COMPEL: Int. J. Comput. Math. Electr. Electron. Eng., 23 (2004), pp. 685-693.
J. Gyselinck and P. Dular, A time-domain homogenization technique for laminated iron cores in 3-D finite element models, IEEE Trans. Magn., 40 (2004), pp. 856-859.
J. Gyselinck, R. V. Sabariego, and P. Dular, A nonlinear time-domain homogenization technique for laminated iron cores in three-dimensional finite element models, IEEE Trans. Magn., 42 (2006), pp. 763-766.
S. K. Harouna and V. Perrier, Helmholtz-Hodge Decomposition on [0, 1]d by Divergence-free and Curl-free Wavelets, in Proceedings of the International Conference on Curves and Surfaces, Springer, Berlin, 2010, pp. 311-329.
T. Y. Hou and X. H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134 (1997), pp. 169-189.
J. D. Jackson, Classical Electrodynamics, Wiley, New York, 1999.
X. Jiang and W. Zheng, An efficient eddy current model for nonlinear Maxwell equations with laminated conductors, SIAM J. Appl. Math., 72 (2012), pp. 1021-1040.
R. Juanes and T. W. Patzek, A variational multiscale finite element method for multiphase flow in porous media, Finite Elem. Anal. Des., 41 (2005), pp. 763-777.
V. G. Kouznetsova, W. A. M. Brekelmans, and F. P. T. Baaijens, An approach to micro-macro modeling of heterogeneous materials, Comput. Mech., 27 (2001), pp. 37-48.
P. D. Ledger and S. Zaglmayr, hp-finite element simulation of three-dimensional eddy current problems on multiply connected domains, Comput. Methods Appl. Mech. Engrg., 199 (2010), pp. 3386-3401.
J. C. Maxwell Garnett, Colors in metal glasses and metal films, Phil. Trans. Roy. Soc. Lond. A, 203 (1904), pp. 385-420.
G. Meunier, Homogenization for periodical electromagnetic structure: Which formulation?, IEEE Trans. Magn., 42 (2010), pp. 763-766.
P. Monk, Finite Element Methods for Maxwell's Equations, Oxford University Press, Oxford, 2003.
F. Murat and L. Tartar, H-convergence, Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, 1977.
G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), pp. 608-623.
I. Niyonzima, C. Geuzaine, and S. Schöps, Waveform relaxation for the computational homogenization of multiscale magnetoquasistatic problems, J. Comput. Phys., 327 (2016), pp. 416-433.
I. Niyonzima, R. V. Sabariego, P. Dular, and C. Geuzaine, Finite element computational homogenization of nonlinear multiscale materials in magnetostatics, IEEE Trans. Magn., 48 (2012), pp. 587-590.
I. Niyonzima, R. V. Sabariego, P. Dular, and C. Geuzaine, Nonlinear computational homogenization method for the evaluation of eddy currents in soft magnetic composites, IEEE Trans. Magn., 50 (2014), pp. 61-64.
I. Niyonzima, R. V. Sabariego, P. Dular, F. Henrotte, and C. Geuzaine, Computational homogenization for laminated ferromagnetic cores in magnetodynamics, IEEE Trans. Magn., 49 (2013), pp. 2049-2052.
I. Niyonzima, R. V. Sabariego, P. Dular, F. Henrotte, and C. Geuzaine, A computational homogenization method for the evaluation of eddy current in nonlinear soft magnetic composites, in Proceeding of the 9th International Symposium on Electric and Magnetic Fields (EMF2013), Bruges, Belgium, 2013.
A. Pankov, G-convergence and Homogenization of Nonlinear Partial Differential Operators, Kluwer Academic Publishers, Norwell, MA, 1997.
Z. Ren, F. Bouillault, A. Razek, A. Bossavit, and J.-C. Vérité, A new hybrid model using electric field formulation for 3D eddy current problems, IEEE Trans. Magn., 26 (1990), pp. 470-473.
R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1969.
A. A. Rodríguez and A. Valli, Eddy Current Approximation of Maxwell Equations: Theory, Algorithms and Applications, Vol. 4, Springer, Berlin, 2010.
R. V. Sabariego, I. Niyonzima, C. Geuzaine, and J. Gyselinck, Time-domain finite-element modelling of laminated iron cores-Large skin effect homogenization considering the Jiles-Atherton hysteresis model, in Proceedings of the 15th Biennial IEEE Conference on Electromagnetic Field Computation (CEFC2012), Oita, Japan, 2012.
E. Sanchez-Palencia and A. Zaoui, Homogenization Techniques for Composite Media, Homogenization Techniques for Composite Media, Vol. 272, 1987.
A. Sihvola, Electromagnetic mixing formulas and applications, IEEE Electromagn. Waves Ser., 47, 1999.
L. Tartar, The General Theory of Homogenization a Personalized Introduction, Springer, Berlin, 2009.
A. Visintin, Homogenization of doubly-nonlinear equations, Rend. Lincei Mat. Appl., 17 (2006), pp. 211-222.
A. Visintin, Two-scale convergence of some integral functionals, Calc. Var., 29 (2007), pp. 239-265.
A. Visintin, Electromagnetic processes in doubly-nonlinear composites, Comm. Partial Differential Equations, 33 (2008), pp. 804-841.
A. Visintin, Homogenization of a parabolic model of ferromagnetism, J. Differential Equations, 250 (2011), pp. 1521-1552.