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MULTISCALE FINITE ELEMENT MODELING OF NONLINEAR
MAGNETOQUASISTATIC PROBLEMS USING MAGNETIC

INDUCTION CONFORMING FORMULATIONS∗

I. NIYONZIMA† , R. V. SABARIEGO‡ , P. DULAR§ , K. JACQUES§ , AND C. GEUZAINE§

Abstract. In this paper we develop magnetic induction conforming multiscale formulations for
magnetoquasistatic problems involving periodic materials. The formulations are derived using the
periodic homogenization theory and applied within a heterogeneous multiscale approach. Therefore
the fine-scale problem is replaced by a macroscale problem defined on a coarse mesh that covers the
entire domain and many mesoscale problems defined on finely-meshed small areas around some points
of interest of the macroscale mesh (e.g., numerical quadrature points). The exchange of information
between these macro and meso problems is thoroughly explained in this paper. For the sake of
validation, we consider a two-dimensional geometry of an idealized periodic soft magnetic composite.
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1. Introduction. The use of numerical methods for solving electromagnetic
problems is today widespread. Indeed, analytical solutions of Maxwell’s equations
are not always available when facing the complexity of real-life devices with compli-
cated geometries and materials exhibiting a possibly nonlinear or hysteretic behavior.
In this paper we are interested in multiscale magnetoquasistatic (MQS) problems.
These problems arise from Maxwell’s equations when the wavelength of the exciting
source is much greater than the size of the structure so that the displacement currents
can be neglected. This is the model that describes the physics of most electric power
systems: electric generators, motors, and transformers.

The finite element (FE) method is a frequently used numerical method for solving
MQS problems for its easiness to handle problems involving both nonlinearities and
complex geometries. To this end, a mesh of the structure is generated and Maxwell’s
equations are weakly verified on average on elements of the mesh, which is ensured
by integrating these equations elementwise. If the problem is well-posed, the finer the
mesh, the more accurate the numerical solution.

Soft ferrites, lamination stacks, and soft magnetic composites (SMC) are multi-
scale materials used in MQS applications. For instance, soft ferrites help reducing the
magnetic losses in high-frequency transformers; the cores of electrotechnical devices
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are laminated to limit the eddy current losses; and the SMCs ease the manufacturing
of three-dimensional paths in electrical machines.

For problems involving such multiscale materials, the application of classical nu-
merical methods such as the FE method becomes prohibitive in terms of the compu-
tational resources (time and memory) storage whence the use of homogenization and
multiscale methods. Using these methods, the multiscale problem is replaced by the
homogenized problem defined on the homogeneous domain with slowly varying fields.
The performance of homogenization and multiscale methods for MQS problems can
be compared by evaluating their ability to

• derive a homogenized problem that can be easily solved;
• handle nonlinearities;
• deal with materials with complex microstructures;
• deal with partial differential equations involving curl operators;
• compute global quantities such as the eddy currents or magnetic losses;
• recover local fields at critical points of interest.

The first homogenization approach used to analytically characterize properties of
composites materials was based on mixing rules [47, 63]. More elaborate theoretical
methods such as the asymptotic expansion method [7], the G-convergence [50, 64],
the Γ-convergence [22, 15, 21], the two-scale convergence [51, 67], and the periodic
unfolding methods [18, 19] allow one to construct the homogenized problem and de-
termine the associated constitutive laws. Equations resulting from these methods
can be used to develop multiscale methods. A nonexhaustive list of these multiscale
methods include the mean-field homogenization method [16, 20], the multiscale finite
element method [41, 32], the variational multiscale method [17, 44], and the hetero-
geneous multiscale method (HMM) [31, 1, 27]. In electromagnetism such methods
have been developed mainly for materials with linear [9, 10, 38, 48, 14, 13] and non-
linear [39, 5, 12] magnetic material laws. While some preliminary results concerning
electromagnetic hysteresis can be found in [61], there is to date no generic multi-
scale method able to accurately handle hysteretic materials in complex geometrical
configurations.

In this paper we develop such a multiscale method to treat MQS problems in-
volving multiscale materials that can exhibit linear, nonlinear, or hysteretic behavior
with the main focus on the development of weak formulations for the homogenized
problem. Using results from the theory of homogenization for the nonlinear electro-
magnetic multiscale problem obtained by Visintin, we develop the magnetic vector
potential formulations for the multiscale, the macroscale, and the mesoscale problems.
The formulations are then validated on simple two-dimensional geometry. The multi-
scale method is inspired by the HMM and is based on the scale separation assumption
ε � 1, where ε = l/L is the ratio between the smallest scale l and the scale of the
material or the characteristic length of external loadings L. The fine-scale problem is
replaced by a macroscale problem defined on a coarse mesh covering the entire domain
and many mesoscale problems that are defined on small, finely meshed areas around
some points of interest of the macroscale mesh (e.g., numerical quadrature points).
The transfer of information between these problems is performed during the upscaling
and the downscaling stages that will be detailed hereafter.

The paper comprises five sections. In section 2 we derive the MQS multiscale
and homogenized problems from the multiscale problem that was studied by Visintin
in [65, 67]. In section 3 we derive the weak forms of the multiscale MQS problem.
Section 4 deals with the multiscale weak formulations for homogenized MQS prob-
lems. Starting from the distributional equations that govern the MQS homogenized
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problem, we develop magnetic vector potential formulations for the macroscale and
the mesoscale problems. Scale transitions are also thoroughly investigated. Section 5
concerns the application of the theory to a simple but representative two-dimensional
problem: the modeling of a soft magnetic composite. Conclusions are drawn in the
last section.

2. Derivation of the homogenized magnetoquasistatic problem. In this
section, the homogenized MQS problem is derived. The derivation uses two main
ingredients: the MQS assumptions which makes it possible to neglect the displace-
ment currents and the homogenization of the corresponding multiscale problem. The
derivation of this paper is made easier by applying the MQS assumptions to the ho-
mogenized PH multiscale problem that was already carried out in [65, 67] instead of
applying the homogenization theory to the parabolic elliptic (PE) multiscale prob-
lem derived from the PH multiscale under appropriate assumptions (see Figure 1). In
[65, 67], existence and uniqueness of the solution was proved via the approximation by
time-discretization, the derivation of a priori estimates, and the passage to the limit
via compensated compactness and compactness by strict convexity. The homogenized
problem was then derived using the two-scale convergence theory for the fields and
the convergence of functionals used to define constitutive laws. In section 2.1 we recall
Maxwell’s equations that govern the evolution of electromagnetic fields and we define
the function spaces used for solving these equations in the weak sense. In section 2.2,
we recall the PH multiscale problem and its homogenization as done in [65, 67]. This
homogenized problem is then used in section 2.3 for the derivation of the homoge-
nized PE problem. In the rest of the section, we use the capital letters P, H, and E
to denote the parabolic, hyperbolic, and elliptic problems, respectively. Thus, the PH
multiscale problem denotes the parabolic hyperbolic multiscale problem whereas the
PE-PH homogenized problem denotes the homogenized problem with a PE problem
at the coarse scale and a PH problem at the fine scale. The PE problem corresponds
to the MQS problem.

2.1. Maxwell’s equations and the function spaces. Consider the electro-
magnetic problem in an open domain ΩT := Ω× I with Ω ⊆ R3 and I = (0, T ] ⊂ R.
The electromagnetic fields are governed by the following Maxwell equations and con-
stitutive laws [8, 11, 42]:

(2.1a–c) curlh = j + js + ε∂te, curl e = −∂tb, div b = 0 in Ω× I,

-(2.2a–b) b(x, t) = B(h(x, t),x), j(x, t) = J (e(x, t),x) ∀(x, t) ∈ Ω× I.

The field h is the magnetic field, b the magnetic flux density, j the electric current
density, js the imposed electric current density (source), and e the electric field. The
material laws (2.2) are expressed in terms of the mappings B : R3 × Ω → R3 and
J : R3 × Ω → R3, linear or not, accounting for the magnetic and electric behavior,
respectively. The domain Ω is subdivided into conducting (Ωc) and nonconducting
(ΩCc ) parts, the former being where eddy currents can appear. The boundary of the
domain Ω is denoted Γ. In sections 3 and 4 we derive the weak solutions of the MQS
problem using the magnetic vector potential formulations [4, 43, 60, 3]. In sections 3
and 4, some structural restrictions on the computational domain are assumed for the
existence and the uniqueness of the solution [60, 3, 4]. The domain Ω is assumed to
be simply connected with a Lipschitz connected boundary Γ. The conducting domain
Ωc is an open subset strictly contained in Ω which can be connected or not. In the
latter case, Ωc = ∪mi=1Ωic, where Ωic, i = 1, 2, . . . , m are connected components of

D
ow

nl
oa

de
d 

04
/1

0/
18

 to
 2

05
.2

08
.1

16
.2

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTISCALE FE MODELING OF QUASISTASTIC PROBLEMS 303

Ωc. For simplicity we assume the nonconducting domain ΩCc to be connected. The
case of a nonconnected ΩCc can be also easily treated. The system of equations must
further be completed by an initial condition on the magnetic flux density assumed
to be divergence-free, i.e., div b0 = 0. The superscript 0 is used to denote initial
condition, i.e., b0 = b(·, 0). This condition together with (2.1b) naturally implies
Gauss magnetic law (2.1c). In the rest of this section, we ignore Gauss magnetic law
which is automatically fulfilled under Faraday’s equation (2.1b) together with this
initial condition div b0 = 0 (see [65, 67]).

The solutions of the fullscale, the macroscale, and the mesoscale problems must
belong to the right function spaces. For almost every t ∈ I, these functions spaces
are defined as the domains of the differential operators grad, curl, and div with
appropriate nonhomogeneous boundary conditions prescribed on the boundary Γ:

H1(Ω) :=
{
u ∈ L2(Ω) : gradu ∈ L2(Ω)

}
,(2.3)

H(curl; Ω) :=
{
u ∈ L2(Ω) : curlu ∈ L2(Ω)

}
,(2.4)

H(div; Ω) := {u ∈ L2(Ω) : divu ∈ L2(Ω).(2.5)

The spaces H1
0 (Ω), H0(curl; Ω), H0(div; Ω) denote the same spaces as the corre-

sponding spaces in (2.3)–(2.5) with traces equal to zero, i.e.,

H1
0 (Ω) :=

{
u ∈ H1(Ω), u|Γ = 0

}
,(2.6)

H0(curl; Ω) := {u ∈H(curl; Ω),n× u|Γ = 0} ,(2.7)

H0(div; Ω) := {u ∈H(div; Ω),n · u|Γ = 0} .(2.8)

The spaces H(curl 0; Ω), H(div 0; Ω) denote the nullspace of the operators curl and
div, respectively. In sections 3 and 4 we consider the following Bochner spaces for the
potentials, solution of the multiscale and the macroscale problems:

(2.9) L2(0, T ;V ) and L2(0, T ;V ∗),

where V can be any vector space (in sections 3 and 4 we use V := H0(curl; Ω)) and
V ∗ is the dual of V . The mesoscale problem leads to the solutions that belong to the
spaces:

(2.10) L2(R3
T ;W ) :=

u : R3
T →W :

(∫
R3

T

) 1
2

‖u‖L2(R3
T :W ) :=

(∫
R3

T

‖u(x, t)‖2W dtdx

) 1
2

<∞

 ,

where the separable Banach space W is defined on the mesoscale domain Y ≡ Ωm.
For the homogenized PH problem, two spaces were used in place of W : the nullspaces
H(curl 0;Y) and H(div 0;Y). The symbol Y is used for functions defined on Y with
periodic boundary conditions.

2.2. Homogenization of the parabolic hyperbolic multiscale problem.
From now on, we consider Ω = R3 and derive the parabolic hyperbolic multiscale
problem along the lines of [65, 67].

Problem 2.1 (PH multiscale problem). The PH multiscale problem was derived
from Maxwell’s equation by neglecting the displacement currents with respect to the
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eddy currents in the conducting domain (i.e., ε∂te
ε � jε in Ωc).

(2.11a–b) curlhε = jε + js + (1− χ
Ωc

)εε ∂te
ε, curl eε = −∂tbε,

(2.12a–b) bε(x, t) = Bε(hε(x, t),x), jε(x, t) = J ε(eε(x, t),x) ∀(x, t) ∈ R3
T ,

where the function χΩc
is the characteristic function, different from zero only on the

conducting domain Ωc. The superscript ε is used to denote the multiscale dependency
of the fields. All derivatives are defined in the distribution sense.

In [65, 67], Gauss magnetic law div bε = 0 was ensured by imposing the initial
condition on bε0 such that div bε0 = 0. The material laws (2.12) are expressed in
terms of the mappings Bε : R3 × Ω→ R3 and J ε : R3 × Ω→ R3 defined by

(2.13) Bε(hε,x) = B̄(hε,x,x/ε), J ε(eε,x) = J̄ (eε,x,x/ε),

where the operators B̄ : R3 × Ω × Y → R3 and J̄ : R3 × Ω × ×Y → R3 are used
to represent two-scale composite materials for which the characteristic length at the
mesoscale is ε. By abuse of notation, we use B and J instead of B̄ and J̄ in the rest
of the text. For the analytical and theoretical study of the multiscale Problem 2.1 we
assume that the nonlinear mapping B is maximal monotone and therefore it can be
derived by the minimization of a convex, lower-semicontinous functional. It also has an
inverse B−1 ≡H that can be derived from a conjuguate convex, lower semi-continuous
functional [33, 35, 59]. This covers cases of linear and nonlinear reversible magnetic
laws. However, one of the major advantages of the computational homogenization
approach proposed in section 4 is the inclusion of hysteretic laws in the numerical
model by means of classical hysteresis models (e.g., Preisach, Jiles–Atherton, etc.). We
will thus lift this hypothesis once we consider the computational framework. We will
still assume that the mapping J is maximal monotone and has an inverse J −1 ≡ E.
In practice, this assumption holds as the materials we consider in this paper are
electrically linear.

Problem 2.1 has been extensively analyzed. A homogenized problem with coarse
and fine problems was derived considering some assumptions on the constitutive laws,
the initial conditions (IC), and the current source js. These assumptions are recalled
in Assumptions 1–3.

Assumption 1 (regularity of the IC and the sources). Assume that the initial
conditions bε0 and eε0 and the source js fulfill the following regularity conditions:

(2.14a–e) bε0 ∈ L2(R3), eε0 ∈ L2(ΩCc ), js ∈ L
2(Ωs×I), div bε0 = 0, div js = 0.

Equation (2.14d) together with (2.11b) ensures Gauss magnetic law div bε = 0.

Assumption 2 (assumptions on the constitutive laws). Assume that the electrical
law is given by jε = σε eε, where the electrical conductivity σε is definite positive in
Ωc, and that the mapping B is maximal monotone.

These restrictions on the mappings cover a wide range of material laws usually
encountered in applications. They cover the linear electrical materials, the linear
and the nonlinear reversible magnetic materials, as well as soft magnetic materials for
which the hysteresis loop can be approximated using the maximal monotone operators.
However, the hard magnetic materials are not covered.
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Assumption 3 (convergence of the initial conditions). Assume that the initial con-
ditions bε0 and eε0 converge in the classical and the two-scale senses, i.e.,

(2.15a–b) bε0 ⇀
2
b0

0 in L2(R3 × Y), bε0 ⇀
〈
b0

0

〉
Y

= b0
M in L2(R3),

(2.16a–b) eε0 ⇀
2
e0

0 in L2(ΩCc × Y), eε0 ⇀
〈
e0

0

〉
Y

= e0
M in L2(ΩCc ).

These fields are used as initial conditions for the fine and the coarse problem, respec-
tively. The curly brackets 〈f〉Y are used to denote the average of the function f over
the cell domain Y , i.e.,

〈f〉Y =
1

|Y |

∫
Y

fdy =
1

|Ωm|

∫
Ωm

fdy = 〈f〉Ωm
,

where |Y | is used to denote the volume of the domain Y ≡ Ωm.

Using Assumption 1 for the IC and the source term and Assumption 2 for the
constitutive laws, the following PH-PH homogenized problem was derived from the
multiscale Problem 2.1 [67].

Problem 2.2 (PH-PH homogenized problem). The PH-PH homogenized problem
has been derived from Problem 2.1 with the following two coarse and fine problems:

Coarse problem: find hM , eM , bM , jM ∈ L
2(R3

T ) such that

(2.17a–b) curlx hM = jM + js + (1− χ
Ωc

)εM∂teM , curlx eM = −∂tbM ,

(2.18a–b) bM = BM (hM ,x), jM = JM (eM ,x) for a.e. (x, t) ∈ R3 × I.

Fine problem: find h0, e0 ∈ L2(R3
T :H(curl 0;Y)) and h1, e1, b0, j0 ∈ L

2(R3
T :

H(div 0;Y)) such that

(2.19a–b) curlx hM + curly h1 = j0 + (1− χ
Ωc

)ε∂te0,

curlx eM + curly e1 = −∂tb0, F illingtext

(2.20a–b) b0 = B(h0,x,y), j0 = J (e0,x,y) for a.e. (x,y, t) ∈ R3 × Y × It.

The macroscale fields are obtained as averages of the zero order terms, i.e., fM =
〈f0〉Y . All the derivatives are defined in the distribution sense.

Equation (2.17b) together with divx b
0
M = 0 implies the coarse scale Gauss mag-

netic law divx bM = 0. The equations of the fine scale (2.19a–b)–(2.20a–b) involve
the nullspaces that can be decomposed as [67, 68, 57, 49]:

H(curl 0;Y) = R3 ⊕ H∗(curl 0;Y) = R3 ⊕ gradyH
1
∗ (Y),(2.21)

H(div 0;Y) = R3 ⊕ H∗(div 0;Y) = R3 ⊕ curlyH∗(curl;Y).(2.22)

Using the decompositions in (2.21) and (2.22), each field f0 of H(curl 0;Y) or
H(div 0;Y) can be written as the sum of an average value 〈f0〉Y ∈ R3 and a zero

average perturbation f̃0. The second equalities in (2.21) and (2.22) are obtained using
the Helmholtz decomposition of L2

∗(Y):

(2.23) L2
∗(Y) = gradyH

1
∗ (Y) ⊕ curlyH∗(curl;Y),

which applies for fields with periodic boundary conditions. Indeed, the subspace of
gradients of a harmonic function which appears in the general decomposition of L2

fields is dismissed in the case of periodic functions (2.23) and for Ω = Rn [24, 40].
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The decomposition (2.23) was used by Visintin for the convergence of functionals
used to derive the nonlinear magnetic material laws. For almost every (x, t) ∈ R3

T ,
the decompositions in (2.21)–(2.22) lead to the decompositions of the first order terms
e0 = eM + grady vc and b0 = bM + curly ac with vc ∈ H1

∗ (Y) and ac ∈H∗(curl;Y).
If the mappings B and J are maximal monotone, then the mappings BM and JM

are also maximal monotone. Their inverses HM ≡ B−1
M and EM ≡ J −1

M can therefore
be determined by minimizing the convex conjugate functionals and determined by
means of the mesoscale problems hereafter [67].

For the mapping HM , find ac ∈H∗(curl;Y) such that

(2.24) (H (bM + curly ac,x,y) , curly a
′
c) = 0, ∀a′c ∈H∗(curl;Y)

and then derive: HM (bM + Bc,x) = 〈H(bM + Bc,x,y)〉Y .
For the mapping JM , find vc ∈ H1

∗ (Y) such that

(2.25) (J (eM + grady vc,x,y) ,grady v
′
c) = 0 ∀v′c ∈ H1

∗ (Y)

and then derive JM (eM + Ec,x) = 〈J (eM + Ec,x by)〉Y .
The operators

Bc : Y × R3 → L2
∗(Y) : (y, bM ) 7→ bc = Bc(y, bM ),(2.26)

Ec : Y × R3 → L2
∗(Y) : (y, eM ) 7→ ec = Ec(y, eM )(2.27)

are solution operators for the mesoscale problems with bc = Bc(y, bM ) = curly ac
and ec = Ec(y, eM ) = grady vc. If the mappings H and J are linear, problem
(2.24)–(2.25) is equivalent to the cell problem obtained using the asymptotic expansion
theory [62, 7, 68]. The dual formulation allows one to define similar problems for the
constituitive laws BM ≡H−1

M and EM = J −1
M .

2.3. Homogenization of the parabolic elliptic multiscale problem. The
MQS problem can be derived by applying the MQS assumption to Maxwell’s equa-
tions. This assumption can be derived by comparing the following physical param-
eters of the problem: Lc and Lf , which are the coarse and fine scale characteristic
lengths (e.g., the sizes of the coarse and the fine domains), λf and λM , which are
the coarse and the fine wavelengths, respectively, and δc and δf , the coarse and the
fine skin depths, respectively. The wavelengths and the skin depths are defined by
λf = 2π/(ω

√
µε), λM = 2π/(ω

√
µM εM ) , δf =

√
2/ω σ µ and δM =

√
2/ω σM µM ,

where σM and εM are the homogenized electric conductivity and permittivity that can
be obtained by solving a linear electrokinetic and electrostatic cell problems [55, 56]
and µM is the nonlinear homogenized magnetic permeability which can be determined
from (2.24). Additionally, the magnetostatic (MS) problem can de derived from the
MQS problem by neglecting the eddy currents if the MS Assumption 5 is fulfilled. The
conditions that lead to the MQS and the MS problems are stated in Assumptions 4–5.

Assumption 4 (MQS assumption). Displacement currents at the coarse and fine
scales can be neglected if the following conditions are fulfilled:

1. The displacement currents at the coarse scale (1 − χΩc
)εM∂teM can be ne-

glected if λc/Lc � 1.
2. The displacement currents at the fine scale (1 − χ

Ωc
)ε∂te0 can be neglected

if λf/Lf � 1.
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Table 1
Type of problems depending on the predefined physical parameters of the problem.

# Problem λc/Lc λf/Lf δc/Lc δf/Lf Multiscale Coarse Fine

(1) ' 1 ' 1 ' 1 ' 1 PH PH PH
(2) � 1 ' 1 ' 1 ' 1 PH P PH
(3) ' 1 ' 1 � 1 ' 1 PH H PH
(4) ' 1 ' 1 � 1 � 1 H H H
(5) � 1 � 1 ' 1 ' 1 PE PE PE
(6) � 1 � 1 � 1 ' 1 PE E PE
(7) � 1 � 1 ' 1 � 1 PE PE E
(8) � 1 � 1 � 1 � 1 E E E

Assumption 5 (MS assumption). The coarse-scale and the fine-scale eddy cur-
rents can be neglected if the following conditions are fulfilled:

1. The coarse scale eddy currents jM can be neglected if there is no net coarse
scale eddy currents (e.g., in the case of perfect insulation) or if δc/Lc � 1.

2. The mesoscale eddy currents j0 can be neglected if there are no conducting
materials in the cell unit (i.e., Ωmc = ∅) or if δf/Lf � 1.

The combination of the parameters defined above lead to the multiscale and
homogenized problems defined in Table 1. In this paper we focus on the PE multiscale
problem 2.3 derived using Assumption 4.

Problem 2.3 (PE multiscale problem). This problem can be derived from Prob-
lem 2.1 if point 2 of Assumption 4 is fulfilled. In that case, the displacement currents
ε∂te

ε can be neglected in the entire domain leading to the following equations:

(2.28a–b) curlhε = jε + js, curl eε = −∂tbε,

(2.29a–b) bε = Bε(hε,x), jε = J ε(eε,x) for a.e. (x, t) ∈ R3
T .

Gauss magnetic law div bε = 0 is automatically verified if the initial condition div bε0 =
0 is imposed.

The homogenized PE problem can be derived from the PE multiscale Problem 2.3
using the two-scale and the convergence of functionals as done in [65, 67]. This ap-
proach was used in [52] where the multiscale Problem 2.3 was solved using the vector
potential formulation and then homogenized. In this paper we choose a different
approach. We use results of the homogenized PH problem and apply the MQS As-
sumption 4 to derive the homogenized PE problem as illustrated in the commutative
diagram in Figure 1. If points 1 and 2 of Assumption 4 are valid, the coarse-scale and
the fine-scale displacement currents can be neglected, leading to the following PE-PE
homogenized problem.

Problem 2.4 (PE-PE homogenized problem). This problem can be derived from
the multiscale Problem 2.2 with the following coarse and fine problems:

Coarse problem: find hM , eM , bM , jM ∈ L
2(R3

T ) such that

(2.30a–b) curlx hM = jM + js, curlx eM = −∂tbM ,

(2.31a–b) bM = BM (hM ,x), jM = JM (eM ,x) for a.e. (x, t) ∈ R3 × I.
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Multiscale Problem 2.1 Homogenized Problem 2.2

Multiscale Problem 2.3 Homogenized Problem 2.4

Multiscale MS problem Homogenized MS problem

Assumption 4

Homogenization

PH problem

Homogenization

PE problem

Assumption 4

Assumption 5

Homogenization

Elliptic problem

Assumption 5

Fig. 1. Diagram illustrating the derivation of the homogenized MQS and MS problems.

Fine problem: find h0, e0 ∈ L2(R3
T :H(curl 0;Y)) and h1, e1, b0, j0 ∈ L

2(R3
T :

H(div 0;Y)) such that

(2.32a–b) curlx hM + curly h1 = j0, curlx eM + curly e1 = −∂tb0,

(2.33a-b) b0 = B(h0,x,y), j0 = J (e0,x,y) for a.e. (x,y, t) ∈ R3 × Y × I.

Equations (2.30a–b) and (2.32a–b) are defined in the distribution sense.

3. The magnetoquasistatic approximation. In this section we develop the
weak formulations for the multiscale problem (2.28a–b)–(2.29a–b). We omit the su-
perscript ε to lighten the contents of the section.

3.1. Magnetic flux density conforming formulations: Dynamic case.
We assume the electrical constitutive law in (2.2b) to be of the form j = σe, where
σ is the electric conductivity assumed to be piecewise constant. We want to solve
(2.28a–b)–(2.29a–b) using the so-called magnetic flux density conforming formulation
[11, 25, 58].

From Gauss magnetic law div b = 0 and (2.28b), the electric field e and the
magnetic flux density b can be expressed in terms of the so-called modified magnetic
vector potential a as

(3.1) b = curla and e = −∂ta.

We therefore derive the following weak form of Ampère’s equation (2.28a) (see [4, 43]):
find a ∈ L2(0, T ;V ) with ∂ta ∈ L2(0, T ;V ∗) such that

(3.2) (h, curla′)Ω − (j,a′)Ω = (js,a
′)Ωs

holds for a′ ∈ V . The vector potential a is not uniquely defined and a gauge condition
must be imposed [4, 46]. The space V = H0(curl; Ω) with the homogeneous boundary
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conditions has been defined in (2.9) and its use leads to the neglect of the boundary
term 〈n× h,a′〉Γ in (3.2).

The magnetic vector potential formulation for the three-dimensional MQS prob-
lem leads to the following problem.

Problem 3.1 (weak form of the three-dimensional MQS problem). Using (2.29a–
b) and introducing (3.1) in (3.2), one gets the weak form: find a ∈ L2(0, T ;V ) with
∂ta ∈ L2(0, T ;V ∗) such that

(3.3) (σ ∂ta,a
′)Ωc + (h, curla′)Ω = (js,a

′)Ωs

for all a′ ∈ V .

The two-dimensional case with all currents perpendicular to the section is ob-
tained by assuming the source current density js = js(x, y)1z, where 1z is the unit
vector along the z axis. If the electric conductivity σ is such that σ13 = 0 = σ23,
then z-components of the magnetic field h and of the magnetic flux density b van-
ish and it is possible to derive the magnetic flux density b from a scalar potential
az(x,y) with a = az1z. In this case the curl operator can be expressed in terms
of the grad operator as curl := 1z × grad and the magnetic flux density reads
b = curla = 1z × grad az. The weak form of the two-dimensional problem can be
derived from (3.3).

Problem 3.2 (weak form of the two-dimensional MQS problem). The weak form
of the magnetic vector potential formulation of a two-dimensional MQS problem reads
as follows: find az ∈ L2(0, T ;H1

0 (Ω)) with ∂taz ∈ L2(0, T ;H−1(Ω)) such that

(3.4) (σ ∂taz, a
′
z)Ωc

+ (h,1z × grad a′z)Ω = (js, a
′
z)Ωs

for all a′z ∈ H1
0 (Ω). The space H−1(Ω) is the dual of H1

0 (Ω).

3.2. Magnetic flux density conforming formulations: Static case. The
static case can be derived as a particular case of the dynamic problem where eddy
currents are neglected. The following three-dimensional weak form is obtained from
(3.3): find a ∈H0(curl; Ω) such that

(h, curla′)Ω = (js,a
′)Ωs(3.5)

for all a′ ∈H0(curl; Ω). The vector potential a is not uniquely defined and a gauge
condition must be imposed.

Analogously the following two-dimensional weak form is derived from (3.4): find
az ∈ H1

0 (Ω) such that

(h,1z × grad a′z)Ω = (js, a
′
z)Ωs

(3.6)

for all a′z ∈ H1
0 (Ω)

4. Multiscale magnetic induction conforming formulations. A first ap-
proach in numerical homogenization consists in precomputing the material law. In the
case of a material with a linear law and periodic microstructure, only one mesoscale
problem must be solved in order to get the homogenized quantity independent of the
macroscale mesh. For the homogenized MQS Problem 2.4, the macroscale prob-
lem is governed by (2.30a–b)–(2.31a–b). The homogenized magnetic constitutive
law (2.31b) can be computed by solving the boundary value mesoscale problem

D
ow

nl
oa

de
d 

04
/1

0/
18

 to
 2

05
.2

08
.1

16
.2

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

310 NIYONZIMA, SABARIEGO, DULAR, JACQUES, AND GEUZAINE

(2.24). For the reversible nonlinear magnetic material laws, the points of the ma-
terial law HM can thus be computed for different values bM , e.g., on the grid
bM = (i∆bM , k∆bM , j∆bM ) with the discretization i, j, k = −N,−(N − 1), . . . ,
−1, 0, 1, . . . , N − 1, N in each direction and ∆bM = bM/(2N) the discretization step,
and then interpolated to get the values of at any point of the application range. This
approach was used in [12].

Hereafter, we develop a coarse-to-fine method inspired by the HMM method in-
troduced by E and Enqguist [1, 2, 26, 27, 28, 29, 30]. Note that the so-called FE2

method [36, 45] popular in the computational mechanics community predates the
HMM method and is based on the same overall philosophy, albeit in a more restric-
tive setting. This method allows one to upscale on-the-fly a homogenized material
law from the mesoscale problems that account for eddy currents at the mesoscale
level. These mesoscale problems also allow one to recover exact electromagnetic fields
at the mesoscale level. This approach becomes quasi-unavoidable when dealing with
problems with hysteresis for which the precomputation of the homogenized magnetic
laws described above and the computation of local fields are not adapted as they do
not account for the history of the material.

In this section we derive the magnetic vector potential formulations for the homog-
enized problem starting with the mesoscale problems governed by the distributional
equations (2.32a–b)–(2.33a–b) and the macroscale problem governed by the distribu-
tional equations (2.30a–b)–(2.31a–b). The index m is used to denote the restriction
of first order terms indexed 0 on the mesoscale domain Ωm (e.g., the restriction of the
field b0 on Ωm is denoted by bm). The index M refers to the macroscale problems.

4.1. Magnetic flux density conforming multiscale formulations: Dy-
namic case.

4.1.1. The macroscale problem. The macroscale MQS problem was derived
in (2.30a–b) of the homogenized Problem 2.4

(4.1a–c) curlx hM = jM , curlx eM = −∂tbM , divx bM = 0 in Ω× I,

(4.2a–b) hM (x, t) = HM (bM + Bc,x) ,

jM (x, t) = JM (eM + Ec,x) ∀(x, t) ∈ Ω× I.

In (4.2a) we use the mapping HM instead of the mapping BM originally used
in Problem 2.4. This mapping is guaranteed to be uniquely defined if B is a max-
imal monotone mapping [66]. The unknown homogenized fields hM , bM , eM , and
jM exhibit slow fluctuations; they can therefore be well approximated on a coarse
mesh. The macroscale fields satisfy the same boundary conditions as the multiscale
fields. Appropriate initial conditions must also be provided as specified in Assumption
3. Note however that the constitutive laws (4.2a–b) are not readily available at the
macroscale level. They will be upscaled using the mesoscale fields.

In the case of a linear electric law jM = JM (eM ) = σMeM , one computation
suffices to extract the homogenized conductivity σM (see details in [7, 55, 54]). In the
case of a nonlinear mapping HM , we derive another mesoscale problem which accounts
for the eddy current effects at the mesoscale level. This mesoscale problem (with eddy
currents) is thus embedded in a HMM approach to compute the constitutive homog-
enized magnetic law on the fly. Furthermore, it enables the accurate computation
of local mesoscale fields and the upscaling of more accurate global quantities such as
the eddy currents losses. The derivation of the homogenized constitutive laws from
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the solution of the mesoscale time-dependent problem (2.32a–b)–(2.33a–b) instead of
the boundary value problem defined by 2.24 was proved by Visintin (see, e.g., [67,
Theorem 7.3]).

Using results of section 3.1 we can derive the three-dimensional macroscale weak
formulation of (4.1)–(4.2).

Problem 4.1 (weak form of the three-dimensional MQS macroscale problem).
The weak form of the three-dimensional macroscale problem reads as follows: find
aM ∈ L2(0, T ;H0(curl; Ω)) with ∂ta ∈ L2(0, T ; (H0(curl; Ω))∗) such that

(4.3)
(
σM∂taM ,a

′
M

)
Ωc

+
(
hM , curlx a

′
M

)
Ω

=
(
js,a

′
M

)
Ωs

holds for all test functions a′M ∈H0(curl; Ω).

The macroscale magnetic field hM (x, t) = HM (curlx aM + bc,x, t) is dependent
on the mesoscale solutions bc. The vector

(4.4) bc = (b(1)
c , b(2)

c , . . . , b(i)
c , . . . , b(NGP)

c )

is a collection of magnetic field corrections obtained by applying the solution operators
in (2.26) for mesoscale problems corresponding to Gauss points x(i). The vector jM
represents the eddy currents and js represents the source current density imposed in
the inductors Ωs.

For the two-dimensional case, we get the following problem.

Problem 4.2 (weak form of the two-dimensional MQS macroscale problem). The
weak form of the two-dimensional macroscale problem reads as follows: find azM ∈
L2(0, T ;H1

0 (Ω)) with ∂tazM ∈ L2(0, T ;H−1(Ω)) such that

(4.5)
(
σM∂tazM , a

′
zM

)
Ωc

+
(
hM ,1z × gradx a

′
zM

)
Ω

=
(
js, a

′
zM

)
Ωs

holds for all test functions a′zM ∈ H1
0 (Ω).

The homogenized magnetic law HM in (4.3) for the three-dimensional problem
and in (4.5) for the two-dimensional problem is upscaled using the mesoscale fields as
described in the following section.

4.1.2. The mesoscale problem. The governing equations of the mesoscale
problem with eddy currents which, unlike problem (2.24)–(2.25), also enable one to
recover accurate local electromagnetic fields, are a modified version of the two-scale
problem (2.32a–b)–(2.33a–b). These equations read

(4.6a–b) curlhεm = jm, curl xeM + curl ye1 = −∂tbm,

(4.7a–b) hm(x,y, t) = H(bm(x,y, t),x,y), jm(x,y, t) = J (em(x,y, t),x,y),

in which we keep the curl of hε instead of using its two-scale decomposition given in
(2.32a). In this equation, hεm is the restriction of the multiscale magnetic field hε to
the representative volume element Ωm also called the “mesoscale domain.” We can
thus use both nonlinear reversible and irreversible (hysteretic) material laws. Problem
(4.6a–b)–(4.7a–b) contains macroscale fields assumed constant at the mesoscale level,
so that the mesoscale problem can be written in terms of the mesoscale coordinates
y. This is the case if the scale separation assumption is fulfilled.
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The two-scale convergence theory allows us to express the curl of the elec-
tric field at the mesoscale level in terms of the curl of the electric field at the
macroscale and the curl of the mesoscale correction term, i.e., curly em = curlx eM+
curly e1. Using the Faraday law at the macroscale together with the vector identity
curly (∂tbM × y) = (n− 1)∂tbM (n = 2, 3 for two-dimensional and three-dimensional
problems, respectively) we can write

(4.8) curly em = curly

(
e1 + eM + κ(curly eM × y)

)
= curly

(
e1 + eM − κ(∂tbM × y)

)
with κ = (n − 1)−1, since curly eM ≡ 0. Similar developments have been proposed
in [48] and [34] for the electric and the magnetic fields in linear cases. Inserting the
orthogonal decomposition of the mesoscale magnetic induction bm = bM + curly ac
we get

(4.9) curl xeM + curl ye1 = −∂t(bM + curly ac).

From (4.9) we get curly (e1 + ∂tac) = 0 which, together with the orthogonal decom-
position (2.22), leads to the expression of the first order term of the electric field e1

in terms of the correction terms ac and vc as

(4.10) e1 = −∂tac − grady vc.

At the mesoscale level, the first order term e1(x, ·, t) must be chosen in H∗(curl;Y)
for almost every (x, t) ∈ R3

T . In section 4.1.3 we will show that ac is tangentially
periodic and we will choose vc to be periodic on the mesoscale domain Ωm. Using
these developments, we can derive the mesoscale three-dimensional weak formulation.

Problem 4.3 (weak form of the three-dimensional MQS mesoscale problem). The
weak form of the three-dimensional mesoscale problem reads as follows: find ac ∈
L2(0, T ;H∗(curl;Y)) with ∂tac ∈ L2(0, T ; (H∗(curl;Y))∗) and vc ∈ L2(0, T ;H1

∗ (Y))
such that (

σ∂tac,a
′
c

)
Ωmc

+
(
h, curlya

′
c

)
Ωm

+
(
σgradyvc,a

′
c

)
Ωmc

(4.11)

=
(
σ(eM − κ∂tbM × y),a′c

)
Ωmc

,(
σ∂tac,gradyv

′
c

)
Ωmc

+
(
σgradyvc,gradyv

′
c

)
Ωmc

(4.12)

=
(
σ(eM − κ∂tbM × y),gradyv

′
c

)
Ωmc

+
〈
n · jM , v′c

〉
Γgm

hold for all test functions a′c ∈H∗(curl;Y) and v′c ∈ H1
∗ (Y).

The magnetic field is given by h(x,y, t) = H(curlyac(x,y, t) + bM (x, t),x,y)

and the boundary term 〈n×h,a′

c〉Γm
is omitted due to the periodicity of h = h0 (see

the definition of function space in (2.10)) and of a
′

c. The domain Ωmc with boundary
Γgm is the conducting part of the mesoscale domain and the electric current density
jM = σMeM is obtained from the macroscale solution.

For the two-dimensional case, the following mesoscale weak formulation can be
derived.
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upscaling

downscaling

Fig. 2. Scale transitions between the macroscale (left) and the mesoscale (right) problems.
Downscaling (macro to meso): obtaining proper boundary conditions and the source terms for the
mesoscale problem from the current macroscale solution. Upscaling (meso to macro): calculating
effective quantities (e.g., material properties) for the macroscale problem from the mesoscale solution
[53].

Problem 4.4 (weak form of the two-dimensional MQS mesoscale problem). The
weak form of the two-dimensional mesoscale problem reads as follows: find azc ∈
L2(0, T ;H1

∗ (Y)) with ∂tazc ∈ L2(0, T ; (H1
∗ (Y))∗) and uc piecewise constant on Ωmc

for almost every (x, t) ∈ R3
T such that(

σ∂tazc, a
′
zc

)
Ωmc

+
(
h,1z × grady a

′
zc

)
Ωm

+
(
σuc, a

′
zc

)
Ωmc

(4.13)

=
(
σ(eM − κ∂tbM × y),1za

′
zc

)
Ωmc

,(
σ∂tazc, u

′
c

)
Ωmc

+
(
σuc, u

′
c

)
Ωmc

=
(
σ(eM − κ∂tbM × y),1zu

′
c

)
Ωmc

(4.14)

hold for all test functions a′zc ∈ H1
∗ (Y) and u′c piecewise constant on Ωmc.

4.1.3. Scale transitions. The macroscale and the mesoscale problems in sec-
tions 4.1.1 and 4.1.2 are not yet well-defined. Indeed, the macroscale magnetic law
HM is not readily available at the macroscale level and the mesoscale problem re-
quires source terms bM , eM and jM and proper boundary conditions to be well-posed.
These two problems need to fill the missing information by exchanging data between
the macro and meso levels. The so-called scale transitions comprise the downscaling
and the upscaling stages (see Figure 2).

During the downscaling, the macroscale fields are imposed as source terms for
the mesoscale problem. Boundary conditions for the mesoscale problem are also
determined so as to respect the two-scale convergence of the physical fields, i.e., the
convergence of the magnetic flux density 〈bm〉Ωm

= bM leads to the following condition
on the tangential component of the correction term of the magnetic vector potential
ac, which is fulfilled if

(4.15)

∫
Ωm

curlac(x,y, t)dy =

∮
Γm

n× ac(x,y, t)dy = 0 ∀(x, t) ∈ R3
T .

This condition is fulfilled if ac(x, ·, t) belongs to the space H∗(curl;Y), i.e., if ac is
tangentially periodic on the cell.

Additionally, grady vc(x, ·, t) = e1(x, ·, t)−∂tac(x, ·, t) also belongs toH∗(curl;Y),
which is automatically ensured by the curl theorem:

(4.16)

∫
Γm

n× grady vcdy =

∫
Ωm

curly grady vcdy.

Further we choose a periodic vc.
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The convergence of the electric current density 〈jm〉Ωmc
= jM also leads to the

following relation:

(4.17)

∫
Ωmc

jc(x,y, t) dy

= −
∫

Ωmc

σ
(
∂tac(x,y, t) + grad vc(x,y, t)

)
dy = 0 ∀(x, t) ∈ R3

T .

The upscaling consists in computing the missing constitutive laws σM , HM to-
gether with ∂HM/∂bM at the macroscale using the mesoscale fields. Due to the
linearity of the electric law, the asymptotic expansion theory can be applied. There-
fore, we compute once and for all the homogenized electric conductivity by solving a
unique cell problem. A similar approach was also adopted in [12].

The upscaling of the nonlinear magnetic law is performed by averaging the mag-
netic field (consequence of the two-scale convergence of the magnetic field):

(4.18) hM (x, t) = HM (bM (x, t),x)

=
1

|Ωmc|

∫
Ωmc

H (curlx aM (x, t) + curly ac(x,y, t),x,y) dy.

For the ith Gauss point, the Jacobian expression reads

(4.19)
dHM

dbM
=

1

|Ωm|

∫
Ωm

(
∂H
∂bM

+
∂H
∂bc

∂Bc

∂bM

)
dy

with bc(x,y, t) = curly ac(x,y, t) = Bc (y, curlx aM(x, t)) and bM = curlx aM. The
derivative with respect to the mesoscale vector potential aM is given by

(4.20)
dHM

daM
=

dHM

dbM

dbM

daM
.

The computation (4.19) involves the Fréchet derivative of Bc with respect to the
macroscale magnetic density bM. This derivative can be evaluated numerically using
the finite difference. In [54], several mesoscale problems per Gauss point were solved
in parallel. A first problem is solved using (4.11)–(4.12) for the three-dimensional
problems (resp., (4.13)–(4.14) for the two-dimensional case) to find the solution when
a macroscale source bM is applied. Then, a time and space independent magnetic
induction perturbation term δbi oriented along the i directions (i =x,y and z) is
added to the macroscale source terms. Therefore, three (resp., two) additional prob-
lems analogous to (4.11)–(4.12) (resp., (4.13)–(4.14) for the two-dimensional case) are
solved in order to determine the Jacobian dHM/dbM needed for the Newton–Raphson
scheme. The total magnetic induction bm for these problems are expressed as

(4.21) bm = bM+curly ac+δbi = curly (ac + κ(bM × y) + κ(δbi × y)) = curly am,

which can be derived from the total magnetic vector potential:

(4.22) am = ac − grady vc + κ(bM × y) + κ(δbi × y).

These developments allow one to transform the three-dimensional equation (4.11) into

(4.23)
(
σ∂tac,a

′
c

)
Ωmc

+
(
H(curlyac + bM + δbi,x,y), curlya

′
c

)
Ωm

+
(
σgradyvc,a

′
c

)
Ωmc

=
(
σ(eM − κ∂tbM × y),a′c

)
Ωmc

.
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Notice that the time derivative of the constant term in (4.22) disappears. We also
modify the two-dimensional equation (4.13) as

(4.24)(
σ∂tazc, a

′
zc

)
Ωmc

+
(
H(1z × grady azc + bM + δbi,x,y),1z × grady a

′
zc

)
Ωm

+
(
σuc, a

′
zc

)
Ωmc

=
(
σ(eM − κ∂tbM × y),1za

′
zc

)
Ωmc

.

Equations (4.12) and (4.14) remain unchanged. This leads to the solution hM +
δbi
hM , where δbi

hM is the perturbation of the magnetic field in direction i. We can
therefore compute the elements of the tangent matrix as

(4.25)

(
∂HM

∂bM

)
ij

≈
(δbi

hM )j

δbi
.

Further mathematical justifications of the numerical computation of the tangent ma-
trix are given in section 4.2.

4.2. Finite element implementation. In this section we discuss the numerical
implementation of the homogenized problem using the finite element method. The
numerical approximation involves errors the sources of which can be numerous in the
case of the MQS problem:

• the error due to the the finiteness of the mesoscale domain (instead of ε→ 0),
• the error due to the modified mesoscale problem (4.6a–b),
• the error due to scale transitions,
• the error due to the approximation using a finite-dimensional space in the

Galerkin approximation,
• the error due to Euler’s time stepper,
• the error in the Newton–Raphson scheme used for solving the nonlinear

macroscale and mesoscale problems,
• the error due to the resolution of the linear systems,
• the error in reduced Jacobian,
• the error resulting from the application of the homogenization near the bound-

aries of the computational domain, etc.
This paper does not deal with the error analysis.

Using a similar approach to the one used in [52], the macroscale and mesoscale
equations are solved using the finite element method. The fields aHM and aHc are
approximations of the continuous fields aM and ac on the discretized computational
domain and aHc ∈ (0, T ] ×WM

H,0 and aHc ∈ (0, T ] ×Wm
h,0, where ×WM

H,0 and Wm
h,0

are discrete subspaces of H0
e(curl; Ω) and H0

e(curl; Ωm)

(4.26) aM(x, t) ≈ aHM(x, t) =

NM∑
p=1

αM,p(t)a
′
M,p(x)

and a(i)
c (y, t) ≈ aHc (y, t) =

Nc∑
p=1

α(i)
c,p(t)a

′
c,p(y),

where the superscript i = 1, 2, . . . , NGP refers to the enumeration of mesoscale prob-
lems, and NM and Nc are the number of degrees of freedom for discretized fields
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at the macroscale and the mesoscale, respectively. Space discretization leads to the
semidiscrete coupled problem:

Find waveforms [αM(t),α
(1)
c (t), . . . ,α

(NGP)
c (t)] such that

(4.27) MM∂tαM + FM(αM,αc) = 0,

and for the mesoscale problems i = 1, . . . , NGP

(4.28) Mm∂tα
(i)
c + Fm(α(i)

c ,α
(i)
M , ∂tα

(i)
M ) = 0

for a given set of initial values [αM(t0),α
(1)
c (t0), . . . ,α

(NGP)
c (t0)], where MM :=

(σMaM,a
′
M)Ωc

with aM and a′M, the ansatz functions, and the functions FM(· · · ) and
Fm(· · · ) are the semidiscrete terms involving the nonlinear magnetic terms stemming
from (4.3) and (4.11) by inserting (4.26).

The time discretization using an implicit Euler method followed by the use of
the Newton–Raphson method to solve the resulting nonlinear problem leads to the
following Jacobian:

(4.29) J
(j,k)
R :=

1

∆tk



MM 0 · · · 0

0 Mm 0 0

... 0
. . . 0

0 0 0 Mm



+



∂F (j,k)
M

∂α
(j,k)
M

∂F (j,k)
M

∂α
(1,j,k)
c

· · ·
∂F (j,k)

M

∂α
(NGP,j,k)
c

∂F (1,j,k)
m

∂α
(1,j,k)
M

∂F (1,j,k)
m

∂α
(1,j,k)
c

0 0

... 0
. . . 0

∂F (NGP,j,k)
m

∂α
(NGP,j,k)
M

0 0
∂F (NGP,j,k)

m

∂α
(NGP,j,k)
c


,

where α
(j,k)
M and α

(i,j,k)
c denote the jth Newton–Raphson iterates and

F (j,k)
M := FM

(
α

(j,k)
M ,α(j,k)

c

)
,(4.30)

F (i,j,k)
m := Fm

(
α(i,j,k)

c ,α
(i,j,k)
M ,

α
(i,j,k)
M −α(i,j,k−1)

M

∆tk

)
,

where the superscripts k and j are used for time steps and the Newton–Raphson
iterations. See [52, section 4] for more details on the derivation of the Jacobian
(4.29). In practice, one does not solve the system above but the Schur complement
system with the reduced Jacobian defined by

(4.31) J̄
(j,k)
R :=

MM

∆tk
+
∂F (j,k)

M

∂α
(j,k)
M

−
NGP∑
i=1

 ∂F (j,k)
M

∂α
(i,j,k)
c

(
Mm

∆tk
+
∂F (i,j,k)

m

∂α
(i,j,k)
c

)−1
∂F (i,j,k)

m

∂α
(i,j,k)
M

 .
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Algorithm 1 Pseudocode for the monolithic FE-HMM.

INPUT: macroscale source js and mesh.
OUTPUT: macroscale fields, mesoscale fields, and global quantities.

procedure macroscale problem
t← t0, initialize the macroscale field aM|t0 = aM0,
for (k ← 1 To NTS) do . the macroscale time loop (index k)

for (j ← 1 To NM
NR) do . the macroscale NR loop (index j)

for (i← 1 To NGP) do . parallel solutions of meso-problems (index i)
downscale the macroscale sources,
compute the mesoscale fields, see Algorithm 2,
compute and upscale the homogenized law HM and
∂HM/∂bM

end for
assemble the Jacobian J̄

(j,k)
R from (4.31) to solve the macroscale problem.

end for
end for

end procedure

Algorithm 2 Pseudocode for one mesoscale problem.

INPUT: macroscale sources and the mesoscale mesh.
OUTPUT: homogenized law HM and ∂HM/∂bM, per Gauss point for Nm problems.

procedure mesoscale problem
prescribe periodic boundary conditions, impose sources,
t← tM, initialize the correction term ac|tM
for (p← 1 To Nm

dim) do . solve Nm
dim mesoscale problems for the kth time step

for (j ← 1 To Nm
NR) do . the mesoscale NR loop (index j)

assemble the matrix and solve the mesoscale problem.
end for

end for
end procedure

The overall FE-HMM method is described in Algorithms 1 and 2. It starts with
the initialization of the macroscale problem followed by a time loop. For each time
step, a nonlinear system is solved using the Newton–Raphson method until conver-
gence (i.e., the residual resM is smaller than some prescribed tolerance tolM). There-
fore, NGP mesoscale problems are solved in parallel and the homogenized law is ob-

tained. The term (Mm

∆tk
+ ∂F (i,j,k)

m /∂α
(i,j,k)
c )−1 (∂F (i,j,k)

m /∂α
(i,j,k)
M ) in (4.31) can be

interpreted as the discretization of the Fréchet derivative (∂B(i)
c /∂bM) in (4.19) (see

[52]).

4.3. The static case. The static problem can be seen as a simplified version
of the dynamic problem obtained by neglecting the time derivatives. The macroscale
weak formulation is derived from the a− v formulation described in the section 4.1.1.
The three-dimensional macroscale weak formulation reads as follows: find aM ∈
He(curl; Ω) such that

(4.32) (hM , curlx a
′
M )Ω = −〈n× hM ,a′M 〉Γh

+ (js,a
′
M )Ωs
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Inductor SMC

Air

L
ea

ei

egap

. js

js

Fig. 3. Two-dimensional soft magnetic composite geometry (only 100 grains out of the actual
400 are drawn). Top and bottom inductors carry opposite source currents. The dimensions are
L = 1000µm, ea = 150

√
2/2µm, ei = 100µm, and egap = 100µm.

holds for all test functions a′M ∈ H0
e(curl; Ω). The two-dimensional macroscale

problem reads as follows: find azM ∈ H1
e (Ω) such that

(4.33) (hM ,1z × gradx a
′
zM )Ω

= −〈n× hM , a′zM1z〉Γh
+ (js, a

′
zM )Ωs

∀a′zM ∈ H10
e (Ω).

The three-dimensional mesoscale problem can be derived from (4.11): find ac ∈
H∗(curl;Y) such that

(4.34) (H(curlyac + bM ,x,y), curlya
′
c)Ωm

= 0 ∀a′c ∈H∗(curl;Y)

and the two-dimensional mesoscale formulation reads as follows: find azc ∈ H1
∗ (Y)

such that

(4.35) (H(1z × grady azc + bM ,x,y),1z × grady a
′
zc)Ωm

= 0 ∀a′zc ∈ H1
∗ (Y).

5. Numerical tests. The models developed in the previous section are valid
for the general three-dimensional problems. In this section we apply the models to
solve nonlinear two-dimensional eddy current problem involving nonlinear/hysteretic
materials using Problems 4.2 and 4.4.

5.1. Description of the problem. We consider an SMC material to test the
ideas developed in the previous sections. An idealized two-dimensional periodic SMC
(with 20 × 20 grains) surrounded by an inductor is studied. We solve this academic
problem using the SMC structure depicted in Figure 3. (Only 10 × 10 grains are
shown.)

The source current js is imposed perpendicular to the xy-plane js = (0, 0, js)
with js = js0s(t), where js0 is the amplitude and s(t) = sin(2πft). Therefore, the
problem can be solved using a two-dimensional magnetic vector potential formulation
with a = (0, 0, az), thus constraining the magnetic flux density b in the xy-plane.
Only one fourth the structure is considered for numerical computations thanks to the
symmetry. (See Figure 4, left, for the reference geometry and Figure 4, right, for
the homogenized geometry.) In both cases, the following boundary conditions are
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Inductor

SMC

Air

Γv

Γinf

Γh

Inductor

SMC

Air

Γv

Γinf

Γh

Fig. 4. Geometry used for computations (one fourth taking advantage of symmetries). Left:
reference geometry (only 25 grains out of the actual 100 are depicted). Right: homogenized geometry.

imposed on Γinf ,Γh, and Γv:

(n · b)|Γinf
= 0 ⇐ (n× a)|Γinf

= 0,(5.1)

(n · b)|Γh
= 0 ⇐ (n× a)|Γh

= 0, (n× h)|Γv = 0.(5.2)

We consider operating frequencies smaller than 50 kHz, which corresponds to
λf and λM ' λ = 6000m. The smallest wavelength of the source is much larger than
the length of the structure (' 500µm) so that the assumption of a MQS problem can
be made.

All materials are isotropic, so that the magnetic field h has only xy components.
The conducting grains (electric conductivity σ = 5 106 S/m) are surrounded by a
perfect insulator, linear and nonmagnetic (µr = 1). The grains are governed by the
following magnetic laws:

1. a nonlinear exponential law H(b) = (α+ β exp(γ‖b‖2)) b with α = 388, β =
0.3774, and γ = 2.97 [23];

2. a Jiles–Atherton hysteresis model with parameters Ms = 1, 145, 500 A/m,
a = 59 A/m, k = 99 A/m, c = 0.55, and α = 1.3 10−4. (See [37, 6] for more
details on the Jiles–Atherton model and the meaning of the parameters it
uses.)

Results obtained using the computational homogenization (subscript “M” for
Macro and “m” for meso) are compared to the reference results (subscript “Ref”)
obtained solving the reference problem (i.e., the weak form of (2.28a–b)–(2.29a–b) on
a very fine mesh.

Some quantities of interest (global quantities and errors) are defined and used for
numerical validation. The global quantities are the reference and the computational
homogenization eddy currents losses:

(5.3)

τPRef(t) =

∫
Ωc

(
σ|∂taε(x, t)|2

)
dx,

τPm(t) =

∫
Ω

τPup
m (x, t) dx =

∫
Ω

(
1

|Ωm|

∫
Ωmc

(
σ|∂tam(x,y, t)|2

)
dy

)
dx.

The equivalent quantities in terms of the magnetic energy can be defined.
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−2.3125e− 06 −1e− 06 3.125e− 07

az proj
−1.61045e− 07 −3.01187e− 08 1.00808e− 07

az c

−2.34262e− 06 −1.03012e− 06 2.82381e− 07

az tot

Fig. 5. Terms contributing to the total mesoscale magnetic vector potential for a cell prob-
lem centered at (325, 25, 0.0)µm. Top: the z-component of the projection term aproj(x,y, t) =
aM (x, t) + κ(y × bM (x, t)). Middle: the z-component of the correction term ac(x,y, t). Bot-
tom: the z-component of the total mesoscale vector potential atot(x,y, t) {nonlinear case with
js0 = 35× 107A/m2, f = 25 kHz}.

Two types of errors are defined as follows:
• the relative error in terms of the eddy current losses:

(5.4) ErrτP =
‖ τPm − τPRef ‖L∞(0, T )

‖ τPRef ‖L∞(0, T )
;

• the pointwise relative error on the fields bM and bm:

ErrbM(x) =
‖ bM(x, ·)− bRef (x, ·) ‖L2(0, T )

‖ bRef (x) ‖L2(0, T )
,(5.5)

Errbm(x) =
‖ bm(x, ·)− bRef (x, ·) ‖L2(0, T )

‖ bRef (x) ‖L2(0, T )
.

5.2. Results. Results of the reference and the multiscale problems are compared
in this section. The latter are obtained by solving a finite element problem on the
entire, finely meshed multiscale domain (110,282 triangular elements). Computational
results are carried out on a macroscale, coarse mesh (42 quad elements). Mesoscale
problems are solved around each numerical quadrature point of the macroscale mesh
using a fine mesh (4125 triangular elements).

Figure 5 depicts the different contributing terms involved in the resolution of
the mesoscale problem. The projection term which varies linearly on the mesoscale
domain is computed from the macroscale fields as aproj(x,y, t) = aM (x, t) + κ(y ×
bM (x, t)). This term is then used as a source for the computation of the correction
term ac(x,y, t) at the mesoscale level which allows one to derive the total magnetic
vector potential atot(x,y, t) = ac(x,y, t) + aM (x, t) + κ(y × bM (x, t)).

The spatial cuts of the magnetic induction b and the eddy currents j, are shown
in Figure 6. The agreement between the reference solution and the mesoscale solution
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Table 2
Soft magnetic composite problem—b-conform formulations. Comparison of the reference and

the computational (macroscale and mesoscale) magnetic flux density (‖b‖ [T ]) at different points of
the macroscale domain {t = 6 · 10−6 s}.

Position (µm) Reference Meso Macro Errbm(x)(%) ErrbM(x)(%)

(25, 25, 0) 0.0157652 0.0158937 0.0347775 0.82 120.60
(25, 475, 0) 0.0186482 0.0181317 0.0403767 2.77 116.52
(175, 175, 0) 0.0158077 0.0158738 0.0346577 0.42 119.25
(475, 25, 0) 0.0156693 0.0158615 0.0345838 1.23 120.70
(475, 475, 0) 0.0184396 0.0158563 0.0417285 14.01 126.30

Table 3
Soft magnetic composite problem—b-conform formulations. Relative L2(0, T ) errors of the

mesoscale and the macroscale magnetic flux density with regard to the reference, Errbm(x) and

ErrbM(x), respectively, at different points of the computational domain.

Position (µm) Errbm(x)(%) ErrbM(x)(%)

(25, 25, 0) 3.27 11.49
(25, 475, 0) 4.93 15.13
(175, 175, 0) 3.01 11.88
(475, 25, 0) 3.04 12.27
(475, 475, 0) 15.46 22.91

on a cell around certain Gauss points in the computational domain proves excellent.
As expected, small discrepancies are observed near the boundary of the domain (see
Tables 2 and 3).

Table 2 displays the values of ‖ b ‖ obtained from the reference solution (Refer-
ence), the macroscale solution (Macro), and the mesoscale solution (Meso) and the
corresponding relative pointwise errors (Error meso, Error macro) for t = 6 · 10−6 s.
In this table, we observe that the mesoscale error increases with the proximity to the
boundary of the computational domain. In the bulk, the error is around 1% and rises
up to 14% at the boundary. Indeed, cells located near the boundary do not respect
the periodicity assumption; they are not immersed in a periodic environment. The
macroscale error is huge and almost independent of the location of the considered
point.

Table 3 provides the relative L2(0, T ) error defined by (5.5). Results of Table 3
allow us to draw the same conclusions as those from Table 2, i.e., the error increases
as the point gets closer to the boundary of the computational domain.

Figure 6 depicts the evolution of the eddy currents losses for excitations at 50 Hz
and 2500 Hz (which correspond to the case with enhanced skin effect). A good agree-
ment between Joules losses is observed for both frequencies: a maximum error of
1.41 % and 6.69 % are observed for f = 50 Hz and f = 2500 Hz, respectively.

Table 4 contains the relative L∞(0, T ) error of the Joule losses defined by (5.4)
as a function of frequency.

Figure 7 shows the convergence of the residual resulting from the resolution by
the Newton–Raphson method as a function of the number of nonlinear iteration. It
can be seen that the macroscale problem converges quadratically while the mesoscale
problems converge at an average rate of 1.33.

6. Conclusions. In this paper we have developed a computational multiscale
method inspired by the HMM approach to solve nonlinear, possibly hysteretic MQS
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Fig. 6. SMC problem, b-conform formulations, hysteretic case. Instantaneous Joule losses and
absolute error between the reference (Ref) and the computational (Comp) solutions. Hysteretic case.
Left: f = 50 Hz. Right: f = 2500 Hz.

Table 4
Soft magnetic composite problem—b-conform formulations. Relative L∞(0, T ) norm error on

the total Joule losses as a function of the frequency.

Frequency (Hz) ErrτP (%)
50 1.41
100 1.46
250 1.61
1000 3.42
2500 6.69

Fig. 7. SMC problem, b-conform formulations, hysteretic case. Convergence of the error as a
function of nonlinear iterations. Top: mesoscale problem. Bottom: macroscale problem.

problems on multiscale domains (e.g., composite materials, lamination stacks, etc.).
To construct the computational multiscale model, we combine theoretical results from
two-scale convergence theory and asymptotic homogenization. The two-scale conver-
gence and periodic unfolding methods are used for deriving the partial differential
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equations governing fields at both the macroscale and the mesoscale levels, valid in
the nonlinear regime and in the presence of curl differential operators. Asymptotic
homogenization is used for defining a mesoscale problem in the case of linear consti-
tutive laws (e.g., the linear electric conductivity law).

Although the theoretical foundation is only valid in the case of linear and non-
linear problems governed by a maximal monotone operator, in practice, the resulting
numerical multiscale scheme has been successfully applied to general MQS problems
also exhibiting memory effects (hysteresis). The numerical tests were performed for
magnetodynamic problems, using b-conform formulations. An excellent agreement
has been obtained between the reference solutions (computed using a brute force
approach) and the computational (mesoscale) solutions. We observed larger errors
near the boundary of the computational domain as the cell problems defined near the
boundary are not immersed in a periodic environment. The eddy current losses are
also accurately evaluated. The error on these losses increases as a function of the
frequency.

For the considered academic test case, the proposed computational multiscale
method fulfills the original goals (section 1): it allows one to solve multiscale MQS
problems, including the computation of local fields at the mesoscale and the accu-
rate evaluation of electromagnetic losses. It naturally handles nonlinear or hysteretic
materials and periodic mesoscale geometries. From an engineering point of view, the
approach could be straightforwadly applied to deal with more complex multiscale
geometries.

The main disadvantage of the method is its higher computational cost. However,
since all the mesoscale problems are independent, the method is perfectly suited for
modern massively parallel computers, and we thus believe that it has a lot of potential,
even compared to brute force approaches, which do not scale well.
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[60] A. A. Rodŕıguez and A. Valli, Eddy Current Approximation of Maxwell Equations: Theory,

Algorithms and Applications, Vol. 4, Springer, Berlin, 2010.
[61] R. V. Sabariego, I. Niyonzima, C. Geuzaine, and J. Gyselinck, Time-domain finite-

element modelling of laminated iron cores—Large skin effect homogenization considering
the Jiles-Atherton hysteresis model, in Proceedings of the 15th Biennial IEEE Conference
on Electromagnetic Field Computation (CEFC2012), Oita, Japan, 2012.

[62] E. Sanchez-Palencia and A. Zaoui, Homogenization Techniques for Composite Media, Ho-
mogenization Techniques for Composite Media, Vol. 272, 1987.

[63] A. Sihvola, Electromagnetic mixing formulas and applications, IEEE Electromagn. Waves
Ser., 47, 1999.

[64] L. Tartar, The General Theory of Homogenization a Personalized Introduction, Springer,
Berlin, 2009.

D
ow

nl
oa

de
d 

04
/1

0/
18

 to
 2

05
.2

08
.1

16
.2

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

326 NIYONZIMA, SABARIEGO, DULAR, JACQUES, AND GEUZAINE

[65] A. Visintin, Homogenization of doubly-nonlinear equations, Rend. Lincei Mat. Appl., 17
(2006), pp. 211–222.

[66] A. Visintin, Two-scale convergence of some integral functionals, Calc. Var., 29 (2007), pp. 239–
265.

[67] A. Visintin, Electromagnetic processes in doubly-nonlinear composites, Comm. Partial Differ-
ential Equations, 33 (2008), pp. 804–841.

[68] A. Visintin, Homogenization of a parabolic model of ferromagnetism, J. Differential Equations,
250 (2011), pp. 1521–1552.

D
ow

nl
oa

de
d 

04
/1

0/
18

 to
 2

05
.2

08
.1

16
.2

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERRATUM

Because of a production error, the originally published version of this article was
incorrect. The updated PDF is attached.

D
ow

nl
oa

de
d 

04
/1

0/
18

 to
 2

05
.2

08
.1

16
.2

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTISCALE MODEL. SIMUL. c© 2018 Society for Industrial and Applied Mathematics
Vol. 16, No. 1, pp. 300–326

MULTISCALE FINITE ELEMENT MODELING OF NONLINEAR
MAGNETOQUASISTATIC PROBLEMS USING MAGNETIC

INDUCTION CONFORMING FORMULATIONS∗

I. NIYONZIMA† , R. V. SABARIEGO‡ , P. DULAR§ , K. JACQUES§ , AND C. GEUZAINE§

Abstract. In this paper we develop magnetic induction conforming multiscale formulations for
magnetoquasistatic problems involving periodic materials. The formulations are derived using the
periodic homogenization theory and applied within a heterogeneous multiscale approach. Therefore
the fine-scale problem is replaced by a macroscale problem defined on a coarse mesh that covers the
entire domain and many mesoscale problems defined on finely-meshed small areas around some points
of interest of the macroscale mesh (e.g., numerical quadrature points). The exchange of information
between these macro and meso problems is thoroughly explained in this paper. For the sake of
validation, we consider a two-dimensional geometry of an idealized periodic soft magnetic composite.

Key words. multiscale modeling, computational homogenization, magnetoquasistatic prob-
lems, finite element method, composite materials, eddy currents, magnetic hysteresis, asymptotic
expansion, convergence theory

AMS subject classifications. 35K55, 65M60, 65N30, 78A25, 78A30, 78A48, 78M10, 78M35,
78M40

DOI. 10.1137/16M1081609

1. Introduction. The use of numerical methods for solving electromagnetic
problems is today widespread. Indeed, analytical solutions of Maxwell’s equations
are not always available when facing the complexity of real-life devices with compli-
cated geometries and materials exhibiting a possibly nonlinear or hysteretic behavior.
In this paper we are interested in multiscale magnetoquasistatic (MQS) problems.
These problems arise from Maxwell’s equations when the wavelength of the exciting
source is much greater than the size of the structure so that the displacement currents
can be neglected. This is the model that describes the physics of most electric power
systems: electric generators, motors, and transformers.

The finite element (FE) method is a frequently used numerical method for solving
MQS problems for its easiness to handle problems involving both nonlinearities and
complex geometries. To this end, a mesh of the structure is generated and Maxwell’s
equations are weakly verified on average on elements of the mesh, which is ensured
by integrating these equations elementwise. If the problem is well-posed, the finer the
mesh, the more accurate the numerical solution.

Soft ferrites, lamination stacks, and soft magnetic composites (SMC) are multi-
scale materials used in MQS applications. For instance, soft ferrites help reducing the
magnetic losses in high-frequency transformers; the cores of electrotechnical devices

∗Received by the editors July 13, 2016; accepted for publication (in revised form) September 5,
2017; published electronically February 22, 2018.

http://www.siam.org/journals/mms/16-1/M108160.html
Funding: This work was supported by the the Belgian Science Policy under grant IAP P7/02

(multiscale modelling of electrical energy system). The third author is a fellow with the Fonds de la
recherche scientifique-FNRS (FRS-FNRS).
†Department of Mechanical Engineering, Columbia University, New York, NY 10027 (inno niyo@

yahoo.com).
‡Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium (ruth.sabariego@

kuleuven.be).
§Department of Electrical Engineering and Computer Science, Universite de Liege, Liege, Belgium

(Patrick.Dular@ulg.ac.be, kevin.jacques@doct.ulg.ac.be, cgeuzaine@ulg.ac.be).

300

D
ow

nl
oa

de
d 

04
/1

0/
18

 to
 2

05
.2

08
.1

16
.2

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/mms/16-1/M108160.html
mailto:inno_niyo@yahoo.com
mailto:inno_niyo@yahoo.com
mailto:ruth.sabariego@kuleuven.be
mailto:ruth.sabariego@kuleuven.be
mailto:Patrick.Dular@ulg.ac.be
mailto:kevin.jacques@doct.ulg.ac.be
mailto:cgeuzaine@ulg.ac.be


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTISCALE FE MODELING OF QUASISTASTIC PROBLEMS 301

are laminated to limit the eddy current losses; and the SMCs ease the manufacturing
of three-dimensional paths in electrical machines.

For problems involving such multiscale materials, the application of classical nu-
merical methods such as the FE method becomes prohibitive in terms of the compu-
tational resources (time and memory) storage whence the use of homogenization and
multiscale methods. Using these methods, the multiscale problem is replaced by the
homogenized problem defined on the homogeneous domain with slowly varying fields.
The performance of homogenization and multiscale methods for MQS problems can
be compared by evaluating their ability to

• derive a homogenized problem that can be easily solved;
• handle nonlinearities;
• deal with materials with complex microstructures;
• deal with partial differential equations involving curl operators;
• compute global quantities such as the eddy currents or magnetic losses;
• recover local fields at critical points of interest.

The first homogenization approach used to analytically characterize properties of
composites materials was based on mixing rules [47, 63]. More elaborate theoretical
methods such as the asymptotic expansion method [7], the G-convergence [50, 64],
the Γ-convergence [22, 15, 21], the two-scale convergence [51, 67], and the periodic
unfolding methods [18, 19] allow one to construct the homogenized problem and de-
termine the associated constitutive laws. Equations resulting from these methods
can be used to develop multiscale methods. A nonexhaustive list of these multiscale
methods include the mean-field homogenization method [16, 20], the multiscale finite
element method [41, 32], the variational multiscale method [17, 44], and the hetero-
geneous multiscale method (HMM) [31, 1, 27]. In electromagnetism such methods
have been developed mainly for materials with linear [9, 10, 38, 48, 14, 13] and non-
linear [39, 5, 12] magnetic material laws. While some preliminary results concerning
electromagnetic hysteresis can be found in [61], there is to date no generic multi-
scale method able to accurately handle hysteretic materials in complex geometrical
configurations.

In this paper we develop such a multiscale method to treat MQS problems in-
volving multiscale materials that can exhibit linear, nonlinear, or hysteretic behavior
with the main focus on the development of weak formulations for the homogenized
problem. Using results from the theory of homogenization for the nonlinear electro-
magnetic multiscale problem obtained by Visintin, we develop the magnetic vector
potential formulations for the multiscale, the macroscale, and the mesoscale problems.
The formulations are then validated on simple two-dimensional geometry. The multi-
scale method is inspired by the HMM and is based on the scale separation assumption
ε � 1, where ε = l/L is the ratio between the smallest scale l and the scale of the
material or the characteristic length of external loadings L. The fine-scale problem is
replaced by a macroscale problem defined on a coarse mesh covering the entire domain
and many mesoscale problems that are defined on small, finely meshed areas around
some points of interest of the macroscale mesh (e.g., numerical quadrature points).
The transfer of information between these problems is performed during the upscaling
and the downscaling stages that will be detailed hereafter.

The paper comprises five sections. In section 2 we derive the MQS multiscale
and homogenized problems from the multiscale problem that was studied by Visintin
in [65, 67]. In section 3 we derive the weak forms of the multiscale MQS problem.
Section 4 deals with the multiscale weak formulations for homogenized MQS prob-
lems. Starting from the distributional equations that govern the MQS homogenized
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problem, we develop magnetic vector potential formulations for the macroscale and
the mesoscale problems. Scale transitions are also thoroughly investigated. Section 5
concerns the application of the theory to a simple but representative two-dimensional
problem: the modeling of a soft magnetic composite. Conclusions are drawn in the
last section.

2. Derivation of the homogenized magnetoquasistatic problem. In this
section, the homogenized MQS problem is derived. The derivation uses two main
ingredients: the MQS assumptions which makes it possible to neglect the displace-
ment currents and the homogenization of the corresponding multiscale problem. The
derivation of this paper is made easier by applying the MQS assumptions to the ho-
mogenized PH multiscale problem that was already carried out in [65, 67] instead of
applying the homogenization theory to the parabolic elliptic (PE) multiscale prob-
lem derived from the PH multiscale under appropriate assumptions (see Figure 1). In
[65, 67], existence and uniqueness of the solution was proved via the approximation by
time-discretization, the derivation of a priori estimates, and the passage to the limit
via compensated compactness and compactness by strict convexity. The homogenized
problem was then derived using the two-scale convergence theory for the fields and
the convergence of functionals used to define constitutive laws. In section 2.1 we recall
Maxwell’s equations that govern the evolution of electromagnetic fields and we define
the function spaces used for solving these equations in the weak sense. In section 2.2,
we recall the PH multiscale problem and its homogenization as done in [65, 67]. This
homogenized problem is then used in section 2.3 for the derivation of the homoge-
nized PE problem. In the rest of the section, we use the capital letters P, H, and E
to denote the parabolic, hyperbolic, and elliptic problems, respectively. Thus, the PH
multiscale problem denotes the parabolic hyperbolic multiscale problem whereas the
PE-PH homogenized problem denotes the homogenized problem with a PE problem
at the coarse scale and a PH problem at the fine scale. The PE problem corresponds
to the MQS problem.

2.1. Maxwell’s equations and the function spaces. Consider the electro-
magnetic problem in an open domain ΩT := Ω× I with Ω ⊆ R3 and I = (0, T ] ⊂ R.
The electromagnetic fields are governed by the following Maxwell equations and con-
stitutive laws [8, 11, 42]:

(2.1a–c) curlh = j + js + ε∂te, curl e = −∂tb, div b = 0 in Ω× I,

-(2.2a–b) b(x, t) = B(h(x, t),x), j(x, t) = J (e(x, t),x) ∀(x, t) ∈ Ω× I.

The field h is the magnetic field, b the magnetic flux density, j the electric current
density, js the imposed electric current density (source), and e the electric field. The
material laws (2.2) are expressed in terms of the mappings B : R3 × Ω → R3 and
J : R3 × Ω → R3, linear or not, accounting for the magnetic and electric behavior,
respectively. The domain Ω is subdivided into conducting (Ωc) and nonconducting
(ΩCc ) parts, the former being where eddy currents can appear. The boundary of the
domain Ω is denoted Γ. In sections 3 and 4 we derive the weak solutions of the MQS
problem using the magnetic vector potential formulations [4, 43, 60, 3]. In sections 3
and 4, some structural restrictions on the computational domain are assumed for the
existence and the uniqueness of the solution [60, 3, 4]. The domain Ω is assumed to
be simply connected with a Lipschitz connected boundary Γ. The conducting domain
Ωc is an open subset strictly contained in Ω which can be connected or not. In the
latter case, Ωc = ∪mi=1Ωic, where Ωic, i = 1, 2, . . . , m are connected components of
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Ωc. For simplicity we assume the nonconducting domain ΩCc to be connected. The
case of a nonconnected ΩCc can be also easily treated. The system of equations must
further be completed by an initial condition on the magnetic flux density assumed
to be divergence-free, i.e., div b0 = 0. The superscript 0 is used to denote initial
condition, i.e., b0 = b(·, 0). This condition together with (2.1b) naturally implies
Gauss magnetic law (2.1c). In the rest of this section, we ignore Gauss magnetic law
which is automatically fulfilled under Faraday’s equation (2.1b) together with this
initial condition div b0 = 0 (see [65, 67]).

The solutions of the fullscale, the macroscale, and the mesoscale problems must
belong to the right function spaces. For almost every t ∈ I, these functions spaces
are defined as the domains of the differential operators grad, curl, and div with
appropriate nonhomogeneous boundary conditions prescribed on the boundary Γ:

H1(Ω) :=
{
u ∈ L2(Ω) : gradu ∈ L2(Ω)

}
,(2.3)

H(curl; Ω) :=
{
u ∈ L2(Ω) : curlu ∈ L2(Ω)

}
,(2.4)

H(div; Ω) := {u ∈ L2(Ω) : divu ∈ L2(Ω).(2.5)

The spaces H1
0 (Ω), H0(curl; Ω), H0(div; Ω) denote the same spaces as the corre-

sponding spaces in (2.3)–(2.5) with traces equal to zero, i.e.,

H1
0 (Ω) :=

{
u ∈ H1(Ω), u|Γ = 0

}
,(2.6)

H0(curl; Ω) := {u ∈H(curl; Ω),n× u|Γ = 0} ,(2.7)

H0(div; Ω) := {u ∈H(div; Ω),n · u|Γ = 0} .(2.8)

The spaces H(curl 0; Ω), H(div 0; Ω) denote the nullspace of the operators curl and
div, respectively. In sections 3 and 4 we consider the following Bochner spaces for the
potentials, solution of the multiscale and the macroscale problems:

(2.9) L2(0, T ;V ) and L2(0, T ;V ∗),

where V can be any vector space (in sections 3 and 4 we use V := H0(curl; Ω)) and
V ∗ is the dual of V . The mesoscale problem leads to the solutions that belong to the
spaces:

(2.10) L2(R3
T ;W ) :=

u : R3
T →W :

(∫
R3

T

) 1
2

‖u‖L2(R3
T :W ) :=

(∫
R3

T

‖u(x, t)‖2W dtdx

) 1
2

<∞

 ,

where the separable Banach space W is defined on the mesoscale domain Y ≡ Ωm.
For the homogenized PH problem, two spaces were used in place of W : the nullspaces
H(curl 0;Y) and H(div 0;Y). The symbol Y is used for functions defined on Y with
periodic boundary conditions.

2.2. Homogenization of the parabolic hyperbolic multiscale problem.
From now on, we consider Ω = R3 and derive the parabolic hyperbolic multiscale
problem along the lines of [65, 67].

Problem 2.1 (PH multiscale problem). The PH multiscale problem was derived
from Maxwell’s equation by neglecting the displacement currents with respect to the
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eddy currents in the conducting domain (i.e., ε∂te
ε � jε in Ωc).

(2.11a–b) curlhε = jε + js + (1− χ
Ωc

)εε ∂te
ε, curl eε = −∂tbε,

(2.12a–b) bε(x, t) = Bε(hε(x, t),x), jε(x, t) = J ε(eε(x, t),x) ∀(x, t) ∈ R3
T ,

where the function χΩc
is the characteristic function, different from zero only on the

conducting domain Ωc. The superscript ε is used to denote the multiscale dependency
of the fields. All derivatives are defined in the distribution sense.

In [65, 67], Gauss magnetic law div bε = 0 was ensured by imposing the initial
condition on bε0 such that div bε0 = 0. The material laws (2.12) are expressed in
terms of the mappings Bε : R3 × Ω→ R3 and J ε : R3 × Ω→ R3 defined by

(2.13) Bε(hε,x) = B̄(hε,x,x/ε), J ε(eε,x) = J̄ (eε,x,x/ε),

where the operators B̄ : R3 × Ω × Y → R3 and J̄ : R3 × Ω × ×Y → R3 are used
to represent two-scale composite materials for which the characteristic length at the
mesoscale is ε. By abuse of notation, we use B and J instead of B̄ and J̄ in the rest
of the text. For the analytical and theoretical study of the multiscale Problem 2.1 we
assume that the nonlinear mapping B is maximal monotone and therefore it can be
derived by the minimization of a convex, lower-semicontinous functional. It also has an
inverse B−1 ≡H that can be derived from a conjuguate convex, lower semi-continuous
functional [33, 35, 59]. This covers cases of linear and nonlinear reversible magnetic
laws. However, one of the major advantages of the computational homogenization
approach proposed in section 4 is the inclusion of hysteretic laws in the numerical
model by means of classical hysteresis models (e.g., Preisach, Jiles–Atherton, etc.). We
will thus lift this hypothesis once we consider the computational framework. We will
still assume that the mapping J is maximal monotone and has an inverse J −1 ≡ E.
In practice, this assumption holds as the materials we consider in this paper are
electrically linear.

Problem 2.1 has been extensively analyzed. A homogenized problem with coarse
and fine problems was derived considering some assumptions on the constitutive laws,
the initial conditions (IC), and the current source js. These assumptions are recalled
in Assumptions 1–3.

Assumption 1 (regularity of the IC and the sources). Assume that the initial
conditions bε0 and eε0 and the source js fulfill the following regularity conditions:

(2.14a–e) bε0 ∈ L2(R3), eε0 ∈ L2(ΩCc ), js ∈ L
2(Ωs×I), div bε0 = 0, div js = 0.

Equation (2.14d) together with (2.11b) ensures Gauss magnetic law div bε = 0.

Assumption 2 (assumptions on the constitutive laws). Assume that the electrical
law is given by jε = σε eε, where the electrical conductivity σε is definite positive in
Ωc, and that the mapping B is maximal monotone.

These restrictions on the mappings cover a wide range of material laws usually
encountered in applications. They cover the linear electrical materials, the linear
and the nonlinear reversible magnetic materials, as well as soft magnetic materials for
which the hysteresis loop can be approximated using the maximal monotone operators.
However, the hard magnetic materials are not covered.
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Assumption 3 (convergence of the initial conditions). Assume that the initial con-
ditions bε0 and eε0 converge in the classical and the two-scale senses, i.e.,

(2.15a–b) bε0 ⇀
2
b0

0 in L2(R3 × Y), bε0 ⇀
〈
b0

0

〉
Y

= b0
M in L2(R3),

(2.16a–b) eε0 ⇀
2
e0

0 in L2(ΩCc × Y), eε0 ⇀
〈
e0

0

〉
Y

= e0
M in L2(ΩCc ).

These fields are used as initial conditions for the fine and the coarse problem, respec-
tively. The curly brackets 〈f〉Y are used to denote the average of the function f over
the cell domain Y , i.e.,

〈f〉Y =
1

|Y |

∫
Y

fdy =
1

|Ωm|

∫
Ωm

fdy = 〈f〉Ωm
,

where |Y | is used to denote the volume of the domain Y ≡ Ωm.

Using Assumption 1 for the IC and the source term and Assumption 2 for the
constitutive laws, the following PH-PH homogenized problem was derived from the
multiscale Problem 2.1 [67].

Problem 2.2 (PH-PH homogenized problem). The PH-PH homogenized problem
has been derived from Problem 2.1 with the following two coarse and fine problems:

Coarse problem: find hM , eM , bM , jM ∈ L
2(R3

T ) such that

(2.17a–b) curlx hM = jM + js + (1− χ
Ωc

)εM∂teM , curlx eM = −∂tbM ,

(2.18a–b) bM = BM (hM ,x), jM = JM (eM ,x) for a.e. (x, t) ∈ R3 × I.

Fine problem: find h0, e0 ∈ L2(R3
T :H(curl 0;Y)) and h1, e1, b0, j0 ∈ L

2(R3
T :

H(div 0;Y)) such that

(2.19a–b) curlx hM + curly h1 = j0 + (1− χ
Ωc

)ε∂te0,

curlx eM + curly e1 = −∂tb0, F illingtext

(2.20a–b) b0 = B(h0,x,y), j0 = J (e0,x,y) for a.e. (x,y, t) ∈ R3 × Y × It.

The macroscale fields are obtained as averages of the zero order terms, i.e., fM =
〈f0〉Y . All the derivatives are defined in the distribution sense.

Equation (2.17b) together with divx b
0
M = 0 implies the coarse scale Gauss mag-

netic law divx bM = 0. The equations of the fine scale (2.19a–b)–(2.20a–b) involve
the nullspaces that can be decomposed as [67, 68, 57, 49]:

H(curl 0;Y) = R3 ⊕ H∗(curl 0;Y) = R3 ⊕ gradyH
1
∗ (Y),(2.21)

H(div 0;Y) = R3 ⊕ H∗(div 0;Y) = R3 ⊕ curlyH∗(curl;Y).(2.22)

Using the decompositions in (2.21) and (2.22), each field f0 of H(curl 0;Y) or
H(div 0;Y) can be written as the sum of an average value 〈f0〉Y ∈ R3 and a zero

average perturbation f̃0. The second equalities in (2.21) and (2.22) are obtained using
the Helmholtz decomposition of L2

∗(Y):

(2.23) L2
∗(Y) = gradyH

1
∗ (Y) ⊕ curlyH∗(curl;Y),

which applies for fields with periodic boundary conditions. Indeed, the subspace of
gradients of a harmonic function which appears in the general decomposition of L2

fields is dismissed in the case of periodic functions (2.23) and for Ω = Rn [24, 40].
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The decomposition (2.23) was used by Visintin for the convergence of functionals
used to derive the nonlinear magnetic material laws. For almost every (x, t) ∈ R3

T ,
the decompositions in (2.21)–(2.22) lead to the decompositions of the first order terms
e0 = eM + grady vc and b0 = bM + curly ac with vc ∈ H1

∗ (Y) and ac ∈H∗(curl;Y).
If the mappings B and J are maximal monotone, then the mappings BM and JM

are also maximal monotone. Their inverses HM ≡ B−1
M and EM ≡ J −1

M can therefore
be determined by minimizing the convex conjugate functionals and determined by
means of the mesoscale problems hereafter [67].

For the mapping HM , find ac ∈H∗(curl;Y) such that

(2.24) (H (bM + curly ac,x,y) , curly a
′
c) = 0, ∀a′c ∈H∗(curl;Y)

and then derive: HM (bM + Bc,x) = 〈H(bM + Bc,x,y)〉Y .
For the mapping JM , find vc ∈ H1

∗ (Y) such that

(2.25) (J (eM + grady vc,x,y) ,grady v
′
c) = 0 ∀v′c ∈ H1

∗ (Y)

and then derive JM (eM + Ec,x) = 〈J (eM + Ec,x by)〉Y .
The operators

Bc : Y × R3 → L2
∗(Y) : (y, bM ) 7→ bc = Bc(y, bM ),(2.26)

Ec : Y × R3 → L2
∗(Y) : (y, eM ) 7→ ec = Ec(y, eM )(2.27)

are solution operators for the mesoscale problems with bc = Bc(y, bM ) = curly ac
and ec = Ec(y, eM ) = grady vc. If the mappings H and J are linear, problem
(2.24)–(2.25) is equivalent to the cell problem obtained using the asymptotic expansion
theory [62, 7, 68]. The dual formulation allows one to define similar problems for the
constituitive laws BM ≡H−1

M and EM = J −1
M .

2.3. Homogenization of the parabolic elliptic multiscale problem. The
MQS problem can be derived by applying the MQS assumption to Maxwell’s equa-
tions. This assumption can be derived by comparing the following physical param-
eters of the problem: Lc and Lf , which are the coarse and fine scale characteristic
lengths (e.g., the sizes of the coarse and the fine domains), λf and λM , which are
the coarse and the fine wavelengths, respectively, and δc and δf , the coarse and the
fine skin depths, respectively. The wavelengths and the skin depths are defined by
λf = 2π/(ω

√
µε), λM = 2π/(ω

√
µM εM ) , δf =

√
2/ω σ µ and δM =

√
2/ω σM µM ,

where σM and εM are the homogenized electric conductivity and permittivity that can
be obtained by solving a linear electrokinetic and electrostatic cell problems [55, 56]
and µM is the nonlinear homogenized magnetic permeability which can be determined
from (2.24). Additionally, the magnetostatic (MS) problem can de derived from the
MQS problem by neglecting the eddy currents if the MS Assumption 5 is fulfilled. The
conditions that lead to the MQS and the MS problems are stated in Assumptions 4–5.

Assumption 4 (MQS assumption). Displacement currents at the coarse and fine
scales can be neglected if the following conditions are fulfilled:

1. The displacement currents at the coarse scale (1 − χΩc
)εM∂teM can be ne-

glected if λc/Lc � 1.
2. The displacement currents at the fine scale (1 − χ

Ωc
)ε∂te0 can be neglected

if λf/Lf � 1.
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Table 1
Type of problems depending on the predefined physical parameters of the problem.

# Problem λc/Lc λf/Lf δc/Lc δf/Lf Multiscale Coarse Fine

(1) ' 1 ' 1 ' 1 ' 1 PH PH PH
(2) � 1 ' 1 ' 1 ' 1 PH P PH
(3) ' 1 ' 1 � 1 ' 1 PH H PH
(4) ' 1 ' 1 � 1 � 1 H H H
(5) � 1 � 1 ' 1 ' 1 PE PE PE
(6) � 1 � 1 � 1 ' 1 PE E PE
(7) � 1 � 1 ' 1 � 1 PE PE E
(8) � 1 � 1 � 1 � 1 E E E

Assumption 5 (MS assumption). The coarse-scale and the fine-scale eddy cur-
rents can be neglected if the following conditions are fulfilled:

1. The coarse scale eddy currents jM can be neglected if there is no net coarse
scale eddy currents (e.g., in the case of perfect insulation) or if δc/Lc � 1.

2. The mesoscale eddy currents j0 can be neglected if there are no conducting
materials in the cell unit (i.e., Ωmc = ∅) or if δf/Lf � 1.

The combination of the parameters defined above lead to the multiscale and
homogenized problems defined in Table 1. In this paper we focus on the PE multiscale
problem 2.3 derived using Assumption 4.

Problem 2.3 (PE multiscale problem). This problem can be derived from Prob-
lem 2.1 if point 2 of Assumption 4 is fulfilled. In that case, the displacement currents
ε∂te

ε can be neglected in the entire domain leading to the following equations:

(2.28a–b) curlhε = jε + js, curl eε = −∂tbε,

(2.29a–b) bε = Bε(hε,x), jε = J ε(eε,x) for a.e. (x, t) ∈ R3
T .

Gauss magnetic law div bε = 0 is automatically verified if the initial condition div bε0 =
0 is imposed.

The homogenized PE problem can be derived from the PE multiscale Problem 2.3
using the two-scale and the convergence of functionals as done in [65, 67]. This ap-
proach was used in [52] where the multiscale Problem 2.3 was solved using the vector
potential formulation and then homogenized. In this paper we choose a different
approach. We use results of the homogenized PH problem and apply the MQS As-
sumption 4 to derive the homogenized PE problem as illustrated in the commutative
diagram in Figure 1. If points 1 and 2 of Assumption 4 are valid, the coarse-scale and
the fine-scale displacement currents can be neglected, leading to the following PE-PE
homogenized problem.

Problem 2.4 (PE-PE homogenized problem). This problem can be derived from
the multiscale Problem 2.2 with the following coarse and fine problems:

Coarse problem: find hM , eM , bM , jM ∈ L
2(R3

T ) such that

(2.30a–b) curlx hM = jM + js, curlx eM = −∂tbM ,

(2.31a–b) bM = BM (hM ,x), jM = JM (eM ,x) for a.e. (x, t) ∈ R3 × I.
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Multiscale Problem 2.1 Homogenized Problem 2.2

Multiscale Problem 2.3 Homogenized Problem 2.4

Multiscale MS problem Homogenized MS problem

Assumption 4

Homogenization

PH problem

Homogenization

PE problem

Assumption 4

Assumption 5

Homogenization

Elliptic problem

Assumption 5

Fig. 1. Diagram illustrating the derivation of the homogenized MQS and MS problems.

Fine problem: find h0, e0 ∈ L2(R3
T :H(curl 0;Y)) and h1, e1, b0, j0 ∈ L

2(R3
T :

H(div 0;Y)) such that

(2.32a–b) curlx hM + curly h1 = j0, curlx eM + curly e1 = −∂tb0,

(2.33a-b) b0 = B(h0,x,y), j0 = J (e0,x,y) for a.e. (x,y, t) ∈ R3 × Y × I.

Equations (2.30a–b) and (2.32a–b) are defined in the distribution sense.

3. The magnetoquasistatic approximation. In this section we develop the
weak formulations for the multiscale problem (2.28a–b)–(2.29a–b). We omit the su-
perscript ε to lighten the contents of the section.

3.1. Magnetic flux density conforming formulations: Dynamic case.
We assume the electrical constitutive law in (2.2b) to be of the form j = σe, where
σ is the electric conductivity assumed to be piecewise constant. We want to solve
(2.28a–b)–(2.29a–b) using the so-called magnetic flux density conforming formulation
[11, 25, 58].

From Gauss magnetic law div b = 0 and (2.28b), the electric field e and the
magnetic flux density b can be expressed in terms of the so-called modified magnetic
vector potential a as

(3.1) b = curla and e = −∂ta.

We therefore derive the following weak form of Ampère’s equation (2.28a) (see [4, 43]):
find a ∈ L2(0, T ;V ) with ∂ta ∈ L2(0, T ;V ∗) such that

(3.2) (h, curla′)Ω − (j,a′)Ω = (js,a
′)Ωs

holds for a′ ∈ V . The vector potential a is not uniquely defined and a gauge condition
must be imposed [4, 46]. The space V = H0(curl; Ω) with the homogeneous boundary
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conditions has been defined in (2.9) and its use leads to the neglect of the boundary
term 〈n× h,a′〉Γ in (3.2).

The magnetic vector potential formulation for the three-dimensional MQS prob-
lem leads to the following problem.

Problem 3.1 (weak form of the three-dimensional MQS problem). Using (2.29a–
b) and introducing (3.1) in (3.2), one gets the weak form: find a ∈ L2(0, T ;V ) with
∂ta ∈ L2(0, T ;V ∗) such that

(3.3) (σ ∂ta,a
′)Ωc + (h, curla′)Ω = (js,a

′)Ωs

for all a′ ∈ V .

The two-dimensional case with all currents perpendicular to the section is ob-
tained by assuming the source current density js = js(x, y)1z, where 1z is the unit
vector along the z axis. If the electric conductivity σ is such that σ13 = 0 = σ23,
then z-components of the magnetic field h and of the magnetic flux density b van-
ish and it is possible to derive the magnetic flux density b from a scalar potential
az(x,y) with a = az1z. In this case the curl operator can be expressed in terms
of the grad operator as curl := 1z × grad and the magnetic flux density reads
b = curla = 1z × grad az. The weak form of the two-dimensional problem can be
derived from (3.3).

Problem 3.2 (weak form of the two-dimensional MQS problem). The weak form
of the magnetic vector potential formulation of a two-dimensional MQS problem reads
as follows: find az ∈ L2(0, T ;H1

0 (Ω)) with ∂taz ∈ L2(0, T ;H−1(Ω)) such that

(3.4) (σ ∂taz, a
′
z)Ωc

+ (h,1z × grad a′z)Ω = (js, a
′
z)Ωs

for all a′z ∈ H1
0 (Ω). The space H−1(Ω) is the dual of H1

0 (Ω).

3.2. Magnetic flux density conforming formulations: Static case. The
static case can be derived as a particular case of the dynamic problem where eddy
currents are neglected. The following three-dimensional weak form is obtained from
(3.3): find a ∈H0(curl; Ω) such that

(h, curla′)Ω = (js,a
′)Ωs(3.5)

for all a′ ∈H0(curl; Ω). The vector potential a is not uniquely defined and a gauge
condition must be imposed.

Analogously the following two-dimensional weak form is derived from (3.4): find
az ∈ H1

0 (Ω) such that

(h,1z × grad a′z)Ω = (js, a
′
z)Ωs

(3.6)

for all a′z ∈ H1
0 (Ω)

4. Multiscale magnetic induction conforming formulations. A first ap-
proach in numerical homogenization consists in precomputing the material law. In the
case of a material with a linear law and periodic microstructure, only one mesoscale
problem must be solved in order to get the homogenized quantity independent of the
macroscale mesh. For the homogenized MQS Problem 2.4, the macroscale prob-
lem is governed by (2.30a–b)–(2.31a–b). The homogenized magnetic constitutive
law (2.31b) can be computed by solving the boundary value mesoscale problem
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(2.24). For the reversible nonlinear magnetic material laws, the points of the ma-
terial law HM can thus be computed for different values bM , e.g., on the grid
bM = (i∆bM , k∆bM , j∆bM ) with the discretization i, j, k = −N,−(N − 1), . . . ,
−1, 0, 1, . . . , N − 1, N in each direction and ∆bM = bM/(2N) the discretization step,
and then interpolated to get the values of at any point of the application range. This
approach was used in [12].

Hereafter, we develop a coarse-to-fine method inspired by the HMM method in-
troduced by E and Enqguist [1, 2, 26, 27, 28, 29, 30]. Note that the so-called FE2

method [36, 45] popular in the computational mechanics community predates the
HMM method and is based on the same overall philosophy, albeit in a more restric-
tive setting. This method allows one to upscale on-the-fly a homogenized material
law from the mesoscale problems that account for eddy currents at the mesoscale
level. These mesoscale problems also allow one to recover exact electromagnetic fields
at the mesoscale level. This approach becomes quasi-unavoidable when dealing with
problems with hysteresis for which the precomputation of the homogenized magnetic
laws described above and the computation of local fields are not adapted as they do
not account for the history of the material.

In this section we derive the magnetic vector potential formulations for the homog-
enized problem starting with the mesoscale problems governed by the distributional
equations (2.32a–b)–(2.33a–b) and the macroscale problem governed by the distribu-
tional equations (2.30a–b)–(2.31a–b). The index m is used to denote the restriction
of first order terms indexed 0 on the mesoscale domain Ωm (e.g., the restriction of the
field b0 on Ωm is denoted by bm). The index M refers to the macroscale problems.

4.1. Magnetic flux density conforming multiscale formulations: Dy-
namic case.

4.1.1. The macroscale problem. The macroscale MQS problem was derived
in (2.30a–b) of the homogenized Problem 2.4

(4.1a–c) curlx hM = jM , curlx eM = −∂tbM , divx bM = 0 in Ω× I,

(4.2a–b) hM (x, t) = HM (bM + Bc,x) ,

jM (x, t) = JM (eM + Ec,x) ∀(x, t) ∈ Ω× I.

In (4.2a) we use the mapping HM instead of the mapping BM originally used
in Problem 2.4. This mapping is guaranteed to be uniquely defined if B is a max-
imal monotone mapping [66]. The unknown homogenized fields hM , bM , eM , and
jM exhibit slow fluctuations; they can therefore be well approximated on a coarse
mesh. The macroscale fields satisfy the same boundary conditions as the multiscale
fields. Appropriate initial conditions must also be provided as specified in Assumption
3. Note however that the constitutive laws (4.2a–b) are not readily available at the
macroscale level. They will be upscaled using the mesoscale fields.

In the case of a linear electric law jM = JM (eM ) = σMeM , one computation
suffices to extract the homogenized conductivity σM (see details in [7, 55, 54]). In the
case of a nonlinear mapping HM , we derive another mesoscale problem which accounts
for the eddy current effects at the mesoscale level. This mesoscale problem (with eddy
currents) is thus embedded in a HMM approach to compute the constitutive homog-
enized magnetic law on the fly. Furthermore, it enables the accurate computation
of local mesoscale fields and the upscaling of more accurate global quantities such as
the eddy currents losses. The derivation of the homogenized constitutive laws from
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the solution of the mesoscale time-dependent problem (2.32a–b)–(2.33a–b) instead of
the boundary value problem defined by 2.24 was proved by Visintin (see, e.g., [67,
Theorem 7.3]).

Using results of section 3.1 we can derive the three-dimensional macroscale weak
formulation of (4.1)–(4.2).

Problem 4.1 (weak form of the three-dimensional MQS macroscale problem).
The weak form of the three-dimensional macroscale problem reads as follows: find
aM ∈ L2(0, T ;H0(curl; Ω)) with ∂ta ∈ L2(0, T ; (H0(curl; Ω))∗) such that

(4.3)
(
σM∂taM ,a

′
M

)
Ωc

+
(
hM , curlx a

′
M

)
Ω

=
(
js,a

′
M

)
Ωs

holds for all test functions a′M ∈H0(curl; Ω).

The macroscale magnetic field hM (x, t) = HM (curlx aM + bc,x, t) is dependent
on the mesoscale solutions bc. The vector

(4.4) bc = (b(1)
c , b(2)

c , . . . , b(i)
c , . . . , b(NGP)

c )

is a collection of magnetic field corrections obtained by applying the solution operators
in (2.26) for mesoscale problems corresponding to Gauss points x(i). The vector jM
represents the eddy currents and js represents the source current density imposed in
the inductors Ωs.

For the two-dimensional case, we get the following problem.

Problem 4.2 (weak form of the two-dimensional MQS macroscale problem). The
weak form of the two-dimensional macroscale problem reads as follows: find azM ∈
L2(0, T ;H1

0 (Ω)) with ∂tazM ∈ L2(0, T ;H−1(Ω)) such that

(4.5)
(
σM∂tazM , a

′
zM

)
Ωc

+
(
hM ,1z × gradx a

′
zM

)
Ω

=
(
js, a

′
zM

)
Ωs

holds for all test functions a′zM ∈ H1
0 (Ω).

The homogenized magnetic law HM in (4.3) for the three-dimensional problem
and in (4.5) for the two-dimensional problem is upscaled using the mesoscale fields as
described in the following section.

4.1.2. The mesoscale problem. The governing equations of the mesoscale
problem with eddy currents which, unlike problem (2.24)–(2.25), also enable one to
recover accurate local electromagnetic fields, are a modified version of the two-scale
problem (2.32a–b)–(2.33a–b). These equations read

(4.6a–b) curlhεm = jm, curl xeM + curl ye1 = −∂tbm,

(4.7a–b) hm(x,y, t) = H(bm(x,y, t),x,y), jm(x,y, t) = J (em(x,y, t),x,y),

in which we keep the curl of hε instead of using its two-scale decomposition given in
(2.32a). In this equation, hεm is the restriction of the multiscale magnetic field hε to
the representative volume element Ωm also called the “mesoscale domain.” We can
thus use both nonlinear reversible and irreversible (hysteretic) material laws. Problem
(4.6a–b)–(4.7a–b) contains macroscale fields assumed constant at the mesoscale level,
so that the mesoscale problem can be written in terms of the mesoscale coordinates
y. This is the case if the scale separation assumption is fulfilled.
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The two-scale convergence theory allows us to express the curl of the elec-
tric field at the mesoscale level in terms of the curl of the electric field at the
macroscale and the curl of the mesoscale correction term, i.e., curly em = curlx eM+
curly e1. Using the Faraday law at the macroscale together with the vector identity
curly (∂tbM × y) = (n− 1)∂tbM (n = 2, 3 for two-dimensional and three-dimensional
problems, respectively) we can write

(4.8) curly em = curly

(
e1 + eM + κ(curly eM × y)

)
= curly

(
e1 + eM − κ(∂tbM × y)

)
with κ = (n − 1)−1, since curly eM ≡ 0. Similar developments have been proposed
in [48] and [34] for the electric and the magnetic fields in linear cases. Inserting the
orthogonal decomposition of the mesoscale magnetic induction bm = bM + curly ac
we get

(4.9) curl xeM + curl ye1 = −∂t(bM + curly ac).

From (4.9) we get curly (e1 + ∂tac) = 0 which, together with the orthogonal decom-
position (2.22), leads to the expression of the first order term of the electric field e1

in terms of the correction terms ac and vc as

(4.10) e1 = −∂tac − grady vc.

At the mesoscale level, the first order term e1(x, ·, t) must be chosen in H∗(curl;Y)
for almost every (x, t) ∈ R3

T . In section 4.1.3 we will show that ac is tangentially
periodic and we will choose vc to be periodic on the mesoscale domain Ωm. Using
these developments, we can derive the mesoscale three-dimensional weak formulation.

Problem 4.3 (weak form of the three-dimensional MQS mesoscale problem). The
weak form of the three-dimensional mesoscale problem reads as follows: find ac ∈
L2(0, T ;H∗(curl;Y)) with ∂tac ∈ L2(0, T ; (H∗(curl;Y))∗) and vc ∈ L2(0, T ;H1

∗ (Y))
such that (

σ∂tac,a
′
c

)
Ωmc

+
(
h, curlya

′
c

)
Ωm

+
(
σgradyvc,a

′
c

)
Ωmc

(4.11)

=
(
σ(eM − κ∂tbM × y),a′c

)
Ωmc

,(
σ∂tac,gradyv

′
c

)
Ωmc

+
(
σgradyvc,gradyv

′
c

)
Ωmc

(4.12)

=
(
σ(eM − κ∂tbM × y),gradyv

′
c

)
Ωmc

+
〈
n · jM , v′c

〉
Γgm

hold for all test functions a′c ∈H∗(curl;Y) and v′c ∈ H1
∗ (Y).

The magnetic field is given by h(x,y, t) = H(curlyac(x,y, t) + bM (x, t),x,y)

and the boundary term 〈n×h,a′

c〉Γm
is omitted due to the periodicity of h = h0 (see

the definition of function space in (2.10)) and of a
′

c. The domain Ωmc with boundary
Γgm is the conducting part of the mesoscale domain and the electric current density
jM = σMeM is obtained from the macroscale solution.

For the two-dimensional case, the following mesoscale weak formulation can be
derived.
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upscaling

downscaling

Fig. 2. Scale transitions between the macroscale (left) and the mesoscale (right) problems.
Downscaling (macro to meso): obtaining proper boundary conditions and the source terms for the
mesoscale problem from the current macroscale solution. Upscaling (meso to macro): calculating
effective quantities (e.g., material properties) for the macroscale problem from the mesoscale solution
[53].

Problem 4.4 (weak form of the two-dimensional MQS mesoscale problem). The
weak form of the two-dimensional mesoscale problem reads as follows: find azc ∈
L2(0, T ;H1

∗ (Y)) with ∂tazc ∈ L2(0, T ; (H1
∗ (Y))∗) and uc piecewise constant on Ωmc

for almost every (x, t) ∈ R3
T such that(

σ∂tazc, a
′
zc

)
Ωmc

+
(
h,1z × grady a

′
zc

)
Ωm

+
(
σuc, a

′
zc

)
Ωmc

(4.13)

=
(
σ(eM − κ∂tbM × y),1za

′
zc

)
Ωmc

,(
σ∂tazc, u

′
c

)
Ωmc

+
(
σuc, u

′
c

)
Ωmc

=
(
σ(eM − κ∂tbM × y),1zu

′
c

)
Ωmc

(4.14)

hold for all test functions a′zc ∈ H1
∗ (Y) and u′c piecewise constant on Ωmc.

4.1.3. Scale transitions. The macroscale and the mesoscale problems in sec-
tions 4.1.1 and 4.1.2 are not yet well-defined. Indeed, the macroscale magnetic law
HM is not readily available at the macroscale level and the mesoscale problem re-
quires source terms bM , eM and jM and proper boundary conditions to be well-posed.
These two problems need to fill the missing information by exchanging data between
the macro and meso levels. The so-called scale transitions comprise the downscaling
and the upscaling stages (see Figure 2).

During the downscaling, the macroscale fields are imposed as source terms for
the mesoscale problem. Boundary conditions for the mesoscale problem are also
determined so as to respect the two-scale convergence of the physical fields, i.e., the
convergence of the magnetic flux density 〈bm〉Ωm

= bM leads to the following condition
on the tangential component of the correction term of the magnetic vector potential
ac, which is fulfilled if

(4.15)

∫
Ωm

curlac(x,y, t)dy =

∮
Γm

n× ac(x,y, t)dy = 0 ∀(x, t) ∈ R3
T .

This condition is fulfilled if ac(x, ·, t) belongs to the space H∗(curl;Y), i.e., if ac is
tangentially periodic on the cell.

Additionally, grady vc(x, ·, t) = e1(x, ·, t)−∂tac(x, ·, t) also belongs toH∗(curl;Y),
which is automatically ensured by the curl theorem:

(4.16)

∫
Γm

n× grady vcdy =

∫
Ωm

curly grady vcdy.

Further we choose a periodic vc.
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The convergence of the electric current density 〈jm〉Ωmc
= jM also leads to the

following relation:

(4.17)

∫
Ωmc

jc(x,y, t) dy

= −
∫

Ωmc

σ
(
∂tac(x,y, t) + grad vc(x,y, t)

)
dy = 0 ∀(x, t) ∈ R3

T .

The upscaling consists in computing the missing constitutive laws σM , HM to-
gether with ∂HM/∂bM at the macroscale using the mesoscale fields. Due to the
linearity of the electric law, the asymptotic expansion theory can be applied. There-
fore, we compute once and for all the homogenized electric conductivity by solving a
unique cell problem. A similar approach was also adopted in [12].

The upscaling of the nonlinear magnetic law is performed by averaging the mag-
netic field (consequence of the two-scale convergence of the magnetic field):

(4.18) hM (x, t) = HM (bM (x, t),x)

=
1

|Ωmc|

∫
Ωmc

H (curlx aM (x, t) + curly ac(x,y, t),x,y) dy.

For the ith Gauss point, the Jacobian expression reads

(4.19)
dHM

dbM
=

1

|Ωm|

∫
Ωm

(
∂H
∂bM

+
∂H
∂bc

∂Bc

∂bM

)
dy

with bc(x,y, t) = curly ac(x,y, t) = Bc (y, curlx aM(x, t)) and bM = curlx aM. The
derivative with respect to the mesoscale vector potential aM is given by

(4.20)
dHM

daM
=

dHM

dbM

dbM

daM
.

The computation (4.19) involves the Fréchet derivative of Bc with respect to the
macroscale magnetic density bM. This derivative can be evaluated numerically using
the finite difference. In [54], several mesoscale problems per Gauss point were solved
in parallel. A first problem is solved using (4.11)–(4.12) for the three-dimensional
problems (resp., (4.13)–(4.14) for the two-dimensional case) to find the solution when
a macroscale source bM is applied. Then, a time and space independent magnetic
induction perturbation term δbi oriented along the i directions (i =x,y and z) is
added to the macroscale source terms. Therefore, three (resp., two) additional prob-
lems analogous to (4.11)–(4.12) (resp., (4.13)–(4.14) for the two-dimensional case) are
solved in order to determine the Jacobian dHM/dbM needed for the Newton–Raphson
scheme. The total magnetic induction bm for these problems are expressed as

(4.21) bm = bM+curly ac+δbi = curly (ac + κ(bM × y) + κ(δbi × y)) = curly am,

which can be derived from the total magnetic vector potential:

(4.22) am = ac − grady vc + κ(bM × y) + κ(δbi × y).

These developments allow one to transform the three-dimensional equation (4.11) into

(4.23)
(
σ∂tac,a

′
c

)
Ωmc

+
(
H(curlyac + bM + δbi,x,y), curlya

′
c

)
Ωm

+
(
σgradyvc,a

′
c

)
Ωmc

=
(
σ(eM − κ∂tbM × y),a′c

)
Ωmc

.
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Notice that the time derivative of the constant term in (4.22) disappears. We also
modify the two-dimensional equation (4.13) as

(4.24)(
σ∂tazc, a

′
zc

)
Ωmc

+
(
H(1z × grady azc + bM + δbi,x,y),1z × grady a

′
zc

)
Ωm

+
(
σuc, a

′
zc

)
Ωmc

=
(
σ(eM − κ∂tbM × y),1za

′
zc

)
Ωmc

.

Equations (4.12) and (4.14) remain unchanged. This leads to the solution hM +
δbi
hM , where δbi

hM is the perturbation of the magnetic field in direction i. We can
therefore compute the elements of the tangent matrix as

(4.25)

(
∂HM

∂bM

)
ij

≈
(δbi

hM )j

δbi
.

Further mathematical justifications of the numerical computation of the tangent ma-
trix are given in section 4.2.

4.2. Finite element implementation. In this section we discuss the numerical
implementation of the homogenized problem using the finite element method. The
numerical approximation involves errors the sources of which can be numerous in the
case of the MQS problem:

• the error due to the the finiteness of the mesoscale domain (instead of ε→ 0),
• the error due to the modified mesoscale problem (4.6a–b),
• the error due to scale transitions,
• the error due to the approximation using a finite-dimensional space in the

Galerkin approximation,
• the error due to Euler’s time stepper,
• the error in the Newton–Raphson scheme used for solving the nonlinear

macroscale and mesoscale problems,
• the error due to the resolution of the linear systems,
• the error in reduced Jacobian,
• the error resulting from the application of the homogenization near the bound-

aries of the computational domain, etc.
This paper does not deal with the error analysis.

Using a similar approach to the one used in [52], the macroscale and mesoscale
equations are solved using the finite element method. The fields aHM and aHc are
approximations of the continuous fields aM and ac on the discretized computational
domain and aHc ∈ (0, T ] ×WM

H,0 and aHc ∈ (0, T ] ×Wm
h,0, where ×WM

H,0 and Wm
h,0

are discrete subspaces of H0
e(curl; Ω) and H0

e(curl; Ωm)

(4.26) aM(x, t) ≈ aHM(x, t) =

NM∑
p=1

αM,p(t)a
′
M,p(x)

and a(i)
c (y, t) ≈ aHc (y, t) =

Nc∑
p=1

α(i)
c,p(t)a

′
c,p(y),

where the superscript i = 1, 2, . . . , NGP refers to the enumeration of mesoscale prob-
lems, and NM and Nc are the number of degrees of freedom for discretized fields
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at the macroscale and the mesoscale, respectively. Space discretization leads to the
semidiscrete coupled problem:

Find waveforms [αM(t),α
(1)
c (t), . . . ,α

(NGP)
c (t)] such that

(4.27) MM∂tαM + FM(αM,αc) = 0,

and for the mesoscale problems i = 1, . . . , NGP

(4.28) Mm∂tα
(i)
c + Fm(α(i)

c ,α
(i)
M , ∂tα

(i)
M ) = 0

for a given set of initial values [αM(t0),α
(1)
c (t0), . . . ,α

(NGP)
c (t0)], where MM :=

(σMaM,a
′
M)Ωc

with aM and a′M, the ansatz functions, and the functions FM(· · · ) and
Fm(· · · ) are the semidiscrete terms involving the nonlinear magnetic terms stemming
from (4.3) and (4.11) by inserting (4.26).

The time discretization using an implicit Euler method followed by the use of
the Newton–Raphson method to solve the resulting nonlinear problem leads to the
following Jacobian:

(4.29) J
(j,k)
R :=

1

∆tk



MM 0 · · · 0

0 Mm 0 0

... 0
. . . 0

0 0 0 Mm



+



∂F (j,k)
M

∂α
(j,k)
M

∂F (j,k)
M

∂α
(1,j,k)
c

· · ·
∂F (j,k)

M

∂α
(NGP,j,k)
c

∂F (1,j,k)
m

∂α
(1,j,k)
M

∂F (1,j,k)
m

∂α
(1,j,k)
c

0 0

... 0
. . . 0

∂F (NGP,j,k)
m

∂α
(NGP,j,k)
M

0 0
∂F (NGP,j,k)

m

∂α
(NGP,j,k)
c


,

where α
(j,k)
M and α

(i,j,k)
c denote the jth Newton–Raphson iterates and

F (j,k)
M := FM

(
α

(j,k)
M ,α(j,k)

c

)
,(4.30)

F (i,j,k)
m := Fm

(
α(i,j,k)

c ,α
(i,j,k)
M ,

α
(i,j,k)
M −α(i,j,k−1)

M

∆tk

)
,

where the superscripts k and j are used for time steps and the Newton–Raphson
iterations. See [52, section 4] for more details on the derivation of the Jacobian
(4.29). In practice, one does not solve the system above but the Schur complement
system with the reduced Jacobian defined by

(4.31) J̄
(j,k)
R :=

MM

∆tk
+
∂F (j,k)

M

∂α
(j,k)
M

−
NGP∑
i=1

 ∂F (j,k)
M

∂α
(i,j,k)
c

(
Mm

∆tk
+
∂F (i,j,k)

m

∂α
(i,j,k)
c

)−1
∂F (i,j,k)

m

∂α
(i,j,k)
M

 .
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Algorithm 1 Pseudocode for the monolithic FE-HMM.

INPUT: macroscale source js and mesh.
OUTPUT: macroscale fields, mesoscale fields, and global quantities.

procedure macroscale problem
t← t0, initialize the macroscale field aM|t0 = aM0,
for (k ← 1 To NTS) do . the macroscale time loop (index k)

for (j ← 1 To NM
NR) do . the macroscale NR loop (index j)

for (i← 1 To NGP) do . parallel solutions of meso-problems (index i)
downscale the macroscale sources,
compute the mesoscale fields, see Algorithm 2,
compute and upscale the homogenized law HM and
∂HM/∂bM

end for
assemble the Jacobian J̄

(j,k)
R from (4.31) to solve the macroscale problem.

end for
end for

end procedure

Algorithm 2 Pseudocode for one mesoscale problem.

INPUT: macroscale sources and the mesoscale mesh.
OUTPUT: homogenized law HM and ∂HM/∂bM, per Gauss point for Nm problems.

procedure mesoscale problem
prescribe periodic boundary conditions, impose sources,
t← tM, initialize the correction term ac|tM
for (p← 1 To Nm

dim) do . solve Nm
dim mesoscale problems for the kth time step

for (j ← 1 To Nm
NR) do . the mesoscale NR loop (index j)

assemble the matrix and solve the mesoscale problem.
end for

end for
end procedure

The overall FE-HMM method is described in Algorithms 1 and 2. It starts with
the initialization of the macroscale problem followed by a time loop. For each time
step, a nonlinear system is solved using the Newton–Raphson method until conver-
gence (i.e., the residual resM is smaller than some prescribed tolerance tolM). There-
fore, NGP mesoscale problems are solved in parallel and the homogenized law is ob-

tained. The term (Mm

∆tk
+ ∂F (i,j,k)

m /∂α
(i,j,k)
c )−1 (∂F (i,j,k)

m /∂α
(i,j,k)
M ) in (4.31) can be

interpreted as the discretization of the Fréchet derivative (∂B(i)
c /∂bM) in (4.19) (see

[52]).

4.3. The static case. The static problem can be seen as a simplified version
of the dynamic problem obtained by neglecting the time derivatives. The macroscale
weak formulation is derived from the a− v formulation described in the section 4.1.1.
The three-dimensional macroscale weak formulation reads as follows: find aM ∈
He(curl; Ω) such that

(4.32) (hM , curlx a
′
M )Ω = −〈n× hM ,a′M 〉Γh

+ (js,a
′
M )Ωs
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Inductor SMC

Air

L
ea

ei

egap

. js

js

Fig. 3. Two-dimensional soft magnetic composite geometry (only 100 grains out of the actual
400 are drawn). Top and bottom inductors carry opposite source currents. The dimensions are
L = 1000µm, ea = 150

√
2/2µm, ei = 100µm, and egap = 100µm.

holds for all test functions a′M ∈ H0
e(curl; Ω). The two-dimensional macroscale

problem reads as follows: find azM ∈ H1
e (Ω) such that

(4.33) (hM ,1z × gradx a
′
zM )Ω

= −〈n× hM , a′zM1z〉Γh
+ (js, a

′
zM )Ωs

∀a′zM ∈ H10
e (Ω).

The three-dimensional mesoscale problem can be derived from (4.11): find ac ∈
H∗(curl;Y) such that

(4.34) (H(curlyac + bM ,x,y), curlya
′
c)Ωm

= 0 ∀a′c ∈H∗(curl;Y)

and the two-dimensional mesoscale formulation reads as follows: find azc ∈ H1
∗ (Y)

such that

(4.35) (H(1z × grady azc + bM ,x,y),1z × grady a
′
zc)Ωm

= 0 ∀a′zc ∈ H1
∗ (Y).

5. Numerical tests. The models developed in the previous section are valid
for the general three-dimensional problems. In this section we apply the models to
solve nonlinear two-dimensional eddy current problem involving nonlinear/hysteretic
materials using Problems 4.2 and 4.4.

5.1. Description of the problem. We consider an SMC material to test the
ideas developed in the previous sections. An idealized two-dimensional periodic SMC
(with 20 × 20 grains) surrounded by an inductor is studied. We solve this academic
problem using the SMC structure depicted in Figure 3. (Only 10 × 10 grains are
shown.)

The source current js is imposed perpendicular to the xy-plane js = (0, 0, js)
with js = js0s(t), where js0 is the amplitude and s(t) = sin(2πft). Therefore, the
problem can be solved using a two-dimensional magnetic vector potential formulation
with a = (0, 0, az), thus constraining the magnetic flux density b in the xy-plane.
Only one fourth the structure is considered for numerical computations thanks to the
symmetry. (See Figure 4, left, for the reference geometry and Figure 4, right, for
the homogenized geometry.) In both cases, the following boundary conditions are
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Inductor

SMC

Air

Γv

Γinf

Γh

Inductor

SMC

Air

Γv

Γinf

Γh

Fig. 4. Geometry used for computations (one fourth taking advantage of symmetries). Left:
reference geometry (only 25 grains out of the actual 100 are depicted). Right: homogenized geometry.

imposed on Γinf ,Γh, and Γv:

(n · b)|Γinf
= 0 ⇐ (n× a)|Γinf

= 0,(5.1)

(n · b)|Γh
= 0 ⇐ (n× a)|Γh

= 0, (n× h)|Γv
= 0.(5.2)

We consider operating frequencies smaller than 50 kHz, which corresponds to
λf and λM ' λ = 6000m. The smallest wavelength of the source is much larger than
the length of the structure (' 500µm) so that the assumption of a MQS problem can
be made.

All materials are isotropic, so that the magnetic field h has only xy components.
The conducting grains (electric conductivity σ = 5 106 S/m) are surrounded by a
perfect insulator, linear and nonmagnetic (µr = 1). The grains are governed by the
following magnetic laws:

1. a nonlinear exponential law H(b) = (α+ β exp(γ‖b‖2)) b with α = 388, β =
0.3774, and γ = 2.97 [23];

2. a Jiles–Atherton hysteresis model with parameters Ms = 1, 145, 500 A/m,
a = 59 A/m, k = 99 A/m, c = 0.55, and α = 1.3 10−4. (See [37, 6] for more
details on the Jiles–Atherton model and the meaning of the parameters it
uses.)

Results obtained using the computational homogenization (subscript “M” for
Macro and “m” for meso) are compared to the reference results (subscript “Ref”)
obtained solving the reference problem (i.e., the weak form of (2.28a–b)–(2.29a–b) on
a very fine mesh.

Some quantities of interest (global quantities and errors) are defined and used for
numerical validation. The global quantities are the reference and the computational
homogenization eddy currents losses:

(5.3)

τPRef(t) =

∫
Ωc

(
σ|∂taε(x, t)|2

)
dx,

τPm(t) =

∫
Ω

τPup
m (x, t) dx =

∫
Ω

(
1

|Ωm|

∫
Ωmc

(
σ|∂tam(x,y, t)|2

)
dy

)
dx.

The equivalent quantities in terms of the magnetic energy can be defined.
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−2.3125e− 06 −1e− 06 3.125e− 07

az proj
−1.61045e− 07 −3.01187e− 08 1.00808e− 07

az c

−2.34262e− 06 −1.03012e− 06 2.82381e− 07

az tot

Fig. 5. Terms contributing to the total mesoscale magnetic vector potential for a cell prob-
lem centered at (325, 25, 0.0)µm. Top: the z-component of the projection term aproj(x,y, t) =
aM (x, t) + κ(y × bM (x, t)). Middle: the z-component of the correction term ac(x,y, t). Bot-
tom: the z-component of the total mesoscale vector potential atot(x,y, t) {nonlinear case with
js0 = 35× 107A/m2, f = 25 kHz}.

Two types of errors are defined as follows:
• the relative error in terms of the eddy current losses:

(5.4) ErrτP =
‖ τPm − τPRef ‖L∞(0, T )

‖ τPRef ‖L∞(0, T )
;

• the pointwise relative error on the fields bM and bm:

ErrbM(x) =
‖ bM(x, ·)− bRef (x, ·) ‖L2(0, T )

‖ bRef (x) ‖L2(0, T )
,(5.5)

Errbm(x) =
‖ bm(x, ·)− bRef (x, ·) ‖L2(0, T )

‖ bRef (x) ‖L2(0, T )
.

5.2. Results. Results of the reference and the multiscale problems are compared
in this section. The latter are obtained by solving a finite element problem on the
entire, finely meshed multiscale domain (110,282 triangular elements). Computational
results are carried out on a macroscale, coarse mesh (42 quad elements). Mesoscale
problems are solved around each numerical quadrature point of the macroscale mesh
using a fine mesh (4125 triangular elements).

Figure 5 depicts the different contributing terms involved in the resolution of
the mesoscale problem. The projection term which varies linearly on the mesoscale
domain is computed from the macroscale fields as aproj(x,y, t) = aM (x, t) + κ(y ×
bM (x, t)). This term is then used as a source for the computation of the correction
term ac(x,y, t) at the mesoscale level which allows one to derive the total magnetic
vector potential atot(x,y, t) = ac(x,y, t) + aM (x, t) + κ(y × bM (x, t)).

The spatial cuts of the magnetic induction b and the eddy currents j, are shown
in Figure 6. The agreement between the reference solution and the mesoscale solution

D
ow

nl
oa

de
d 

04
/1

0/
18

 to
 2

05
.2

08
.1

16
.2

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTISCALE FE MODELING OF QUASISTASTIC PROBLEMS 321

Fig. 6. SMC problem, b-conform formulations, hysteretic case. Spatial cuts of the z-component
of the eddy currents j (top) and of the x-component of the magnetic induction b (bottom) along the
line {x = 25, z = 0}µm. (f = 10 kHz, t = 5 10−7s for the curve of eddy currents and t = 25 10−7s
for the curve of the magnetic induction).

on a cell around certain Gauss points in the computational domain proves excellent.
As expected, small discrepancies are observed near the boundary of the domain (see
Tables 2 and 3).

Table 2 displays the values of ‖ b ‖ obtained from the reference solution (Refer-
ence), the macroscale solution (Macro), and the mesoscale solution (Meso) and the
corresponding relative pointwise errors (Error meso, Error macro) for t = 6 · 10−6 s.
In this table, we observe that the mesoscale error increases with the proximity to the
boundary of the computational domain. In the bulk, the error is around 1% and rises
up to 14% at the boundary. Indeed, cells located near the boundary do not respect
the periodicity assumption; they are not immersed in a periodic environment. The
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Table 2
Soft magnetic composite problem—b-conform formulations. Comparison of the reference and

the computational (macroscale and mesoscale) magnetic flux density (‖b‖ [T ]) at different points of
the macroscale domain {t = 6 · 10−6 s}.

Position (µm) Reference Meso Macro Errbm(x)(%) ErrbM(x)(%)

(25, 25, 0) 0.0157652 0.0158937 0.0347775 0.82 120.60
(25, 475, 0) 0.0186482 0.0181317 0.0403767 2.77 116.52
(175, 175, 0) 0.0158077 0.0158738 0.0346577 0.42 119.25
(475, 25, 0) 0.0156693 0.0158615 0.0345838 1.23 120.70
(475, 475, 0) 0.0184396 0.0158563 0.0417285 14.01 126.30

Table 3
Soft magnetic composite problem—b-conform formulations. Relative L2(0, T ) errors of the

mesoscale and the macroscale magnetic flux density with regard to the reference, Errbm(x) and

ErrbM(x), respectively, at different points of the computational domain.

Position (µm) Errbm(x)(%) ErrbM(x)(%)

(25, 25, 0) 3.27 11.49
(25, 475, 0) 4.93 15.13
(175, 175, 0) 3.01 11.88
(475, 25, 0) 3.04 12.27
(475, 475, 0) 15.46 22.91
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Fig. 7. SMC problem, b-conform formulations, hysteretic case. Instantaneous Joule losses and
absolute error between the reference (Ref) and the computational (Comp) solutions. Hysteretic case.
Left: f = 50 Hz. Right: f = 2500 Hz.

macroscale error is huge and almost independent of the location of the considered
point.

Table 3 provides the relative L2(0, T ) error defined by (5.5). Results of Table 3
allow us to draw the same conclusions as those from Table 2, i.e., the error increases
as the point gets closer to the boundary of the computational domain.

Figure 7 depicts the evolution of the eddy currents losses for excitations at 50 Hz
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Table 4
Soft magnetic composite problem—b-conform formulations. Relative L∞(0, T ) norm error on

the total Joule losses as a function of the frequency.

Frequency (Hz) ErrτP (%)
50 1.41
100 1.46
250 1.61
1000 3.42
2500 6.69

Fig. 8. SMC problem, b-conform formulations, hysteretic case. Convergence of the error as a
function of nonlinear iterations. Top: mesoscale problem. Bottom: macroscale problem.

and 2500 Hz (which correspond to the case with enhanced skin effect). A good agree-
ment between Joules losses is observed for both frequencies: a maximum error of
1.41 % and 6.69 % are observed for f = 50 Hz and f = 2500 Hz, respectively.

Table 4 contains the relative L∞(0, T ) error of the Joule losses defined by (5.4)
as a function of frequency.

Figure 8 shows the convergence of the residual resulting from the resolution by
the Newton–Raphson method as a function of the number of nonlinear iteration. It
can be seen that the macroscale problem converges quadratically while the mesoscale
problems converge at an average rate of 1.33.

6. Conclusions. In this paper we have developed a computational multiscale
method inspired by the HMM approach to solve nonlinear, possibly hysteretic MQS
problems on multiscale domains (e.g., composite materials, lamination stacks, etc.).
To construct the computational multiscale model, we combine theoretical results from
two-scale convergence theory and asymptotic homogenization. The two-scale conver-
gence and periodic unfolding methods are used for deriving the partial differential
equations governing fields at both the macroscale and the mesoscale levels, valid in
the nonlinear regime and in the presence of curl differential operators. Asymptotic
homogenization is used for defining a mesoscale problem in the case of linear consti-
tutive laws (e.g., the linear electric conductivity law).

Although the theoretical foundation is only valid in the case of linear and non-
linear problems governed by a maximal monotone operator, in practice, the resulting
numerical multiscale scheme has been successfully applied to general MQS problems
also exhibiting memory effects (hysteresis). The numerical tests were performed for
magnetodynamic problems, using b-conform formulations. An excellent agreement
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has been obtained between the reference solutions (computed using a brute force
approach) and the computational (mesoscale) solutions. We observed larger errors
near the boundary of the computational domain as the cell problems defined near the
boundary are not immersed in a periodic environment. The eddy current losses are
also accurately evaluated. The error on these losses increases as a function of the
frequency.

For the considered academic test case, the proposed computational multiscale
method fulfills the original goals (section 1): it allows one to solve multiscale MQS
problems, including the computation of local fields at the mesoscale and the accu-
rate evaluation of electromagnetic losses. It naturally handles nonlinear or hysteretic
materials and periodic mesoscale geometries. From an engineering point of view, the
approach could be straightforwadly applied to deal with more complex multiscale
geometries.

The main disadvantage of the method is its higher computational cost. However,
since all the mesoscale problems are independent, the method is perfectly suited for
modern massively parallel computers, and we thus believe that it has a lot of potential,
even compared to brute force approaches, which do not scale well.
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