Biological control; integrated pest management; push-pull strategy; semiochemical
Abstract :
[en] Combining intercropping with the release of semiochemicals may strengthen biological control of aphids as a push-pull strategy that simultaneously repels aphids and attracts their natural enemies. This hypothesis was tested in the Henan Province of China in 2016 where aphids, their natural enemies and mummies were trapped and observed on crops in three treatments: wheat-pea strip intercropping solely (control), intercropping combined with the release of E-β-farnesene (EBF) and intercropping combined with the release of methyl salicylate (MeSA). Each
treatment was repeated four times. The abundance of aphids throughout the growing season (9 weeks between March and May) was significantly decreased and the abundance of natural
enemies and mummies were significantly increased in treatments with releases of semiochemicals compared to intercropping solely. The effect was stronger with MeSA than with EBF on the control of Rhopalosiphum padi and pea aphids as well as on the attraction of lacewings and hoverflies. Indeed, lacewings and hoverflies were on average twice more numerous in MeSA than in the other treatments. These results show that combining wheat-pea
intercropping with the release of EBF or MeSA can significantly reduce aphid density and attract their natural enemies and that this effect is strengthen with MeSA when compared to EBF.
Research Center/Unit :
TERRA Teaching and Research Centre - TERRA
Disciplines :
Entomology & pest control Agriculture & agronomy
Author, co-author :
Xu, Qingxuan; Chinese Academy of Agricultural Science > Institute of Plant Protection > State Key Laboratory for Biology of Plant Diseases and Insect Pests, MoA-CABI Joint Laboratory for Bio-safety
Hatt, Séverin ; Université de Liège - ULiège > R&D Direction : Chercheurs ULg en mobilité
Han, Zongli; Chinese Academy of Agricultural Science > Institute of Plant Protection > State Key Laboratory for Biology of Plant Diseases and Insect Pests, MoA-CABI Joint Laboratory for Bio-safety
Francis, Frédéric ; Université de Liège - ULiège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Gestion durable des bio-agresseurs
Chen, Julian; Chinese Academy of Agricultural Science > Institute of Plant Protection > State Key Laboratory for Biology of Plant Diseases and Insect Pests, MoA-CABI Joint Laboratory for Bio-safety
Language :
English
Title :
Combining E-β-farnesene and methyl salicylate release with wheat-pea intercropping enhances biological control of aphids in North China
Publication date :
2018
Journal title :
Biocontrol Science and Technology
ISSN :
0958-3157
eISSN :
1360-0478
Publisher :
Informa UK Limited, trading as Taylor & Francis Group, United Kingdom
National Key R & D Plan in China (2016YFD0300701, 2017YFD0201701) Cooperation Project between Belgium and China from the Ministry of Science and Technology (MOST; 2014DF32270) National Science Foundation of China (31371946) CARE AgricultureIsLife (University of Liège)
Bates, D., Maechler, M., Bolker, B., & Walker, S., (2014). lme4: Linear mixed-effects models using Eigen and S4. R Package
Bedoussac, L., & Justes, E., (2010). The efficiency of a durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant and Soil, 330, 19–35. doi: 10.1007/s11104-009-0082-2
Boo, K. S., Chung, I. B., Han, K. S., Pickett, J. A., & Wadhams, L. J., (1998). Response of the lacewing Chrysopa cognata to pheromones of its aphid prey. Journal of Chemical Ecologocal, 24, 631–643. doi: 10.1023/A:1022386001722
Cai, Q., Zhang, Q., & Cheo, M., (2004). Contribution of indole alkaloids to Sitobion avenae (F.) resistance in wheat. Journal of Applied Entomology, 128, 517–521. doi: 10.1111/j.1439-0418.2004.00770.x
Cui, L. L., Francis, F., Heuskin, S., Lognay, G., Liu, Y. J., Dong, J., … Liu, Y., (2012). The functional significance of E-b-Farnesene: Does it influence the populations of aphid natural enemies in the fields? Biological Control, 60, 108–112. doi: 10.1016/j.biocontrol.2011.11.006
Daems, F., Béra, F., Lorge, S., Fischer, C., Brostaux, Y., Francis, F., … Heuskin, S., (2016). Impact of climatic factors on the release of E-β-caryophyllene from alginate beads. Biotechnology, Agronomy. Society and Environment, 20, 130–142
Fereres, A., Lister, R., Araya, J., & Foster, J., (1989). Development and reproduction of the English Grain Aphid (Homoptera: Aphididae) on wheat cultivars infected with barley yellow dwarf virus. Environmental Entomology, 18, 388–393. doi: 10.1093/ee/18.3.388
Foster, S. P., Denholm, I., Thompson, R., Poppy, G. M., & Powell, W., (2005). Reduced response of insecticide-resistant aphids and attraction of parasitoids to aphid alarm pheromone; a potential fitness trade-off. Bulletin of Entomological Research, 95, 37–46. doi: 10.1079/BER2004336
Francis, F., Lognay, G., & Haubruge, E., (2004). Olfactory responses to aphid and host plant volatile releases: (E)-β-farnesene an effective kairomone for the predator Adalia bipunctata. Journal of Chemical Ecology, 30, 741–755. doi: 10.1023/B:JOEC.0000028429.13413.a2
Francis, F., Martini, T., Lognay, G., & Haubruge, E., (2005). Role of (E)-β-farnesene in systematic aphid prey location by Episyrphus balteatus larvae (Diptera: Syrphidae). European Journal of Entomology, 102, 431–436. doi: 10.14411/eje.2005.061
Glinwood, R. T., & Pettersson, J., (2000). Change in response of Rhopalosiphum padi spring migrants to the repellent winter host component methyl salicylate. Entomologia Experimentalis et Applicata, 94, 325–330. doi: 10.1046/j.1570-7458.2000.00634.x
Grung, M., Lin, Y., Zhang, H., Steen, A. O., Huang, J., Zhang, G., & Larssen, T., (2015). Pesticide levels and environmental risk in aquatic environments in China-A review. Environment International, 81, 87–97. doi: 10.1016/j.envint.2015.04.013
Hatano, E., Kunert, G., Weisser, W. W., & Shingleton A. W., (2010). Aphid wing induction and ecological costs of alarm pheromone emission under field conditions. PLoS ONE, 5, e11188. doi: 10.1371/journal.pone.0011188
Hauggaard-Nielsen, H., Jørnsgaard, B., Kinane, J., & Jensen, E. S., (2008). Grain legume-cereal intercropping: The practical application of diversity, competition and facilitation in arable and organic cropping systems. Renewable Agriculture and Food Systems, 23, 3–12. doi: 10.1017/S1742170507002025
He, J., & Li, Q., (1992). Study on Chinese species of the genus Sphaerophoria (Diptera: Syrphidae). Jiaotong University (Agricultural Science), 10, 13–22
Heuskin, S., Lorge, S., Godin, B., Leroy, P., Frére, I., Verheggen, F., … Lognay, G., (2012a). Optimisation of a semiochemical slow-release alginate formulation attractive towards Aphidius ervi Haliday parasitoids. Pest Management Science, 68, 127–136. doi: 10.1002/ps.2234
Heuskin, S., Lorge, S., Lognay, G., Wathelet, J. P., Béra, F., Leroy, P., … Brostaux, Y., (2012b). A semiochemical slow-release formulation in a biological control approach to attract hoverflies. Journal of Environment and Ecology, 3, 72–85. doi: 10.5296/jee.v3i1.1725
Hothorn, T., Bretz, F., & Westfall, P., (2008). Simultaneous inference in general arametric models. Biometrical Journal, 50, 346–363. doi: 10.1002/bimj.200810425
James, D. G., (2003a). Field evaluation of herbivore-induced plant volatiles as attractants for beneficial insects: Methyl salicylate and the green lacewing Chrysopa nigricornis. Journal of Chemical Ecology, 29, 1601–1609. doi: 10.1023/A:1024270713493
James, D. G., (2003b). Synthetic herbivore-induced plant volatiles as field attractants for beneficial insects. Environmental Entomology, 32, 977–982. doi: 10.1603/0046-225X-32.5.977
James, D. G., (2006). Methyl salicylate is a field attractant for the golden eyed lacewing, Chrysopa oculata. Biocontrol Science and Technology, 16, 107–110. doi: 10.1080/09583150500188510
Kim, K., Kabir, E., & Jahan, S., (2017). Exposure to pesticides and the associated human health effects. Science of the Total Environment, 575, 525–535. doi: 10.1016/j.scitotenv.2016.09.009
Knörzer, H., Graeff-Hönninger, S., Guo, B., Wang, P., & Claupein, W., (2009). The rediscovery of intercropping in China: A traditional cropping system for future Chinese agriculture–A review. In E., Lichtfouse (Ed.), Climate change, intercropping, pest control and beneficial microorganisms, sustainable agriculture reviews (pp. 13–44). Dordrecht: Springer
Kunert, G., Otto, S., Rose, U. S. R., Gershenzon, J., & Weisser, W., (2005). Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecology Letters, 8, 596–603. doi: 10.1111/j.1461-0248.2005.00754.x
Li, Q., (1988). Notes on the genus Scaeva fabricius from Xinjiang and new records in China (Diptera, Syrphidae). Journal of August First Agricultural College (China), 35, 38–44
Li, Z., Zhang, S., Cai, X. M., Luo, L. Y., Dong, S. L., Cui, J. J., & Chen, Z. M., (2017). Three odorant binding proteins may regulate the behavioural response of Chrysopa pallens to plant volatiles and the aphid alarm pheromone (E)-b-farnesene. Insect Molecular Biology, 26, 255–265. doi: 10.1111/imb.12295
Lithourgidis, A., Dordas, C., Damalas, C., & Vlachostergios, D., (2011). Annual intercrops: An alternative pathway for sustainable agriculture. Australian Journal of Crop Science, 5, 396–410
Lopes, T., Hatt, S., Xu, Q., Chen, J., Liu, Y., & Francis, F., (2016). Wheat (Triticum aestivum L.)-based intercropping systems for biological pest control: A review. Pest Management Science, 72, 2193–2202. doi: 10.1002/ps.4332
Ma, X., Liu, X., Zhang, Q., Zhao, J., Cai, Q., Ma, Y., & Chen, D., (2006). Assessment of cotton aphids, Aphis gossypii, and their natural enemies on aphid-resistant and aphid-susceptible wheat varieties in a wheat–cotton relay intercropping system. Entomologia experimentalis et applicata, 121, 235–241. doi: 10.1111/j.1570-8703.2006.00484.x
Mallinger, R. E., Hogg, D. B., & Gratton, C., (2011). Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. Journal of Economic Entomology, 104, 115–124. doi: 10.1603/EC10253
Martini, X., Pelz-Stelinski, K., & Stelinski, L., (2014). Plant pathogen-induced volatiles attract parasitoids to increase parasitism of an insectvector. Frontiers in Ecology and Evolution, 2, 1–8. doi: 10.3389/fevo.2014.00008
Mensah, R., Moore, C., Watts, N., Deseo, M. A., Glennie, P., & Pitt, A., (2014). Discovery and development of a new semiochemical biopesticide for cotton pest management: Assessment of extract effects on the cotton pest Helicoverpa spp. Entomologia Experimentalis et Applicata, 152, 1–15. doi: 10.1111/eea.12198
Nakashima, Y., Ida, T. Y., Powell, W., Pickett, J. A., Birkett, M. A., Taki, H., & Takabayashi, J., (2016). Field evaluation of synthetic aphid sex pheromone in enhancing suppression of aphid abundance by their natural enemies. BioControl, 61, 485–496. doi: 10.1007/s10526-016-9734-3
Ndzana, R. A., Magro, A., Bedoussac, L., Justes, E., Journet, E., & Hemptinne, J.-L., (2014). Is there an associational resistance of winter pea-durum wheat intercrops towards Acyrthosiphon pisum Harris? Journal of Applied Entomology, 138, 577–585. doi: 10.1111/jen.12119
Ninkovic, V., Ahmed, E., Glinwood, R., & Pettersson, J., (2003). Effects of two types of semiochemical on population development of the bird cherry oat aphid Rhopalosiphum padi in a barley crop. Agricultural and Forest Entomology, 5, 27–34. doi: 10.1046/j.1461-9563.2003.00159.x
Orre, G. U., Wratten, S. D., Jonsson, M., Simpson, M., & Hale, R., (2013). ‘Attract and reward’: Combining a herbivore-induced plant volatile with floral resource supplementation–multi-trophic level effects. Biological Control, 64, 106–115. doi: 10.1016/j.biocontrol.2012.10.003
R Core Team. (2017). R: A language and environment for statistical computing. Vienna: Author
Ren, S., Wang, X., Pang, H., Peng, Z. Q., & Zeng, T., (2009). Colored pictorial handbook of ladybird beetles in China. Beijing: Science Press
Rodríguez, L. C., & Niemeyer, H. M., (2005). Integrated pest management, semiochemicals and microbial pest-controlagents in Latin American agriculture. Crop Protection, 24, 615–623. doi: 10.1016/j.cropro.2004.11.006
Saona, C. R., Kaplan, I., Braasch, J., Chinnasamy, D., & Williams, L., (2011). Field responses of predaceous arthropods to methyl salicylate: A meta-analysis and case study in cranberries. Biological Control, 59, 294–303. doi: 10.1016/j.biocontrol.2011.06.017
Sarles, L., Verhaeghe, A., Francis, F., & Verheggen, F., (2015). Semiochemicals of Rhagoletis fruit flies: Potential for integrated pest management. Crop Protection, 78, 114–118. doi: 10.1016/j.cropro.2015.09.001
Taylor, L., (1981). Euraphid 1980: Aphid forecasting and pathogens & a handbook for aphid identification. Harpenden: Rothamsted Experimental Station
Thieme, T., & Dixon, A. F., (2015). Is the response of aphids to alarm pheromone stable? Journal of Applied Entomology, 139, 741–746. doi: 10.1111/jen.12262
van Veen, M., (2010). Hoverflies of Northwest Europe: Identification keys to the Syrphidae. Zeist: KNNV
Verheggen, F. J., Fagel, Q., Heuskin, S., Lognay, G., Francis, F., & Haubruge, E., (2007). Electrophysiological and behavioral responses of the multicolored Asian lady beetle, Harmonia axyridis Pallas, to sesquiterpene semiochemicals. Journal of Chemical Ecology, 33, 2148–2155. doi: 10.1007/s10886-007-9370-6
Verheggen, F. J., Mescher, M. C., Haubruge, E., Moraes, C. M., & Schwartzberg, E., (2008). Emission of alarm pheromone in aphids: A non-contagious phenomenon. Journal of Chemical Ecology, 34, 1146–1148. doi: 10.1007/s10886-008-9528-x
Wang, G., Cui, L. L., Dong, J., Francis, F., Liu, Y., & Tooker, J., (2011). Combining intercropping with semiochemical releases: Optimization of alternative control of Sitobion avenae in wheat crops in China. Entomologia Experimentalis Et Applicata, 140, 189–195. doi: 10.1111/j.1570-7458.2011.01150.x
Wang, W., Liu, Y., Chen, J., Ji, X., Zhou, H., & Wang, G., (2009). Impact of intercropping aphid-resistant wheat cultivars with oilseed rape on wheat aphid (Sitobion avenae) and its natural enemies. Acta Ecologica Sinica, 29, 186–191. doi: 10.1016/j.chnaes.2009.07.009
Xu, Q., Hatt, S., Lopes, T., Zhang, Y., Bodson, B., Chen, J. L., & Francis, F., (2018). A push-pull strategy to control aphids combines intercropping with semiochemical releases. Journal of Pest Science, 91, 93–103. doi: 10.1007/s10340-017-0888-2
Yang, J., (1974). The lifestyle and common species of Chrysopa in China. Entomology Knowledge, 11, 36–41
Zhao, L., Chen, J., Cheng, D., Sun, J. R., Liu, Y., & Tian, Z., (2009). Biochemical and molecular characterizations of Sitobion avenae-induced wheat defense responses. Crop Protection, 28, 435–442. doi: 10.1016/j.cropro.2009.01.005
Zhou, H., Chen, J., Cheng, D., Liu, Y., & Sun, J. R., (2009a). Effects of wheat-pea intercropping on the population dynamics of Sitobion avenae (Homoptera: Aphididae) and its main natural enemies. Acta Ecologica Sinica, 52, 775–782
Zhou, H., Chen, L., Cheng, J., Liu, Y., & Sun, J. R., (2009b). The effect of intercropping between wheat and pea on spatial distribution of Sitobion avenae based on GIS. Scientia Agricultura Sinica, 42, 3904–3913
Zhou, H., Chen, L., Liu, Y., Chen, J. L., & Francis, F., (2016). Use of slow-release plant infochemicals to control aphids: A first investigation in a Belgian wheat field. Science Report, 6, 1–8. doi: 10.1038/s41598-016-0001-8
Zhu, J., Cossé, A., Obrycki, J., Boo, K. S., & Baker, T. C., (1999). Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea to semiochemicals released from their prey and host plant: Electroantennogram and behavioral responses. Journal of Chemical Ecology, 25, 1163–1177. doi: 10.1023/A:1020846212465
Zhu, J., & Park, K. C., (2005). Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator. Journal of Chemical Ecology, 31, 1733–1746. doi: 10.1007/s10886-005-5923-8