Arras, B., Azmoodeh, E., Poly, G. and Swan, Y. (2019). A bound on the Wasserstein-2 distance between linear combinations of independent random variables. Stochastic Processes and Their Applications 129(7), 2341– 2375.
Azmoodeh, A., Campese, S. and Poly, G. (2014). Fourth moment theorems for Markov diffusion generators. Journal of Functional Analysis 266, 2341–2359. MR3150163 https://doi.org/10.1016/j.jfa.2013.10.014
Azmoodeh, E., Malicet, D., Mijoule, G. and Poly, G. (2016). Generalization of the Nualart–Peccati criterion. Annals of Probability 44, 924–954. MR3474463 https://doi.org/10.1214/14-AOP992
Azmoodeh, E., Peccati, G. and Poly, G. (2014). Convergence towards linear combinations of chi-squared random variables: A Malliavin-based approach. In Séminaire de Probabilités XLVII (Special Volume in Memory of Marc Yor), 339–367. MR3444306 https://doi.org/10.1007/978-3-319-18585-9_16
Bapat, R. B. (1989). Infinite divisibility of multivariate gamma distributions and M-matrices. Sankhya Series A 51, 73–78. MR1065560
Barbour, A. D. (1990). Stein’s method for diffusion approximations. Probability Theory and Related Fields 84, 297–322. MR1035659 https://doi.org/10.1007/BF01197887
Barbour, A. D., Holst, L. and Janson, S. (1992). Poisson Approximation. Oxford: Clarendon Press. MR1163825
Chen, L. H. Y., Goldstein, L. and Shao, Q. M. (2010). Normal Approximation by Stein’s Method. Springer. MR2732624 https://doi.org/10.1007/978-3-642-15007-4
Döbler, C. (2015). Stein’s method of exchangeable pairs for the Beta distribution and generalizations. Electronic Journal of Probability 20, 1–34. MR3418541 https://doi.org/10.1214/EJP.v20-3933
Döbler, C. and Peccati, G. (2018). The gamma Stein equation and noncentral de Jong theorems. Bernoulli 24, 3384–3421. MR3788176 https://doi.org/10.3150/17-BEJ963
Eden, R. and Viquez, J. (2015). Nourdin–Peccati analysis on Wiener and Wiener–Poisson space for general distributions. Stochastic Processes and Their Applications 125, 182–216. MR3274696 https://doi.org/10.1016/j. spa.2014.09.001
Eichelsbacher, P. and Thäle, C. (2014). Malliavin–Stein method for variance-Gamma approximation on Wiener space. Electronic Journal of Probability 20, 1–28. MR3425543 https://doi.org/10.1214/EJP.v20-4136
Eisenbaum, N. and Kaspi, H. (2006). A characterization of the infinitely divisible squared Gaussian processes. Annals of Probability 34, 728–742. MR2223956 https://doi.org/10.1214/009117905000000684
Eisenbaum, N. and Kaspi, H. (2009). On permanental processes. Stochastic Processes and Their Applications 119, 1401–1415. MR2513113 https://doi.org/10.1016/j.spa.2008.07.003
Gaunt, R. E. (2013). Rates of convergence of variance-Gamma approximations via Stein’s method. MR3194737 https://doi.org/10.1214/EJP.v19-3020
Gaunt, R. E. (2014). Variance-Gamma approximation via Stein’s method. Electronic Journal of Probability 19, 38, 1–33. MR3194737 https://doi.org/10.1214/EJP.v19-3020
Gaunt, R. E. (2017). On Stein’s method for products of normal random variables and zero bias couplings. Bernoulli 23, 3311–3345. MR3654808 https://doi.org/10.3150/16-BEJ848
Gaunt, R. E. (2018). Products of normal, beta and gamma random variables: Stein characterisations and distributional theory. Brazilian Journal of Probability and Statistics 32, 437–466. MR3787761 https://doi.org/10. 1214/16-BJPS349
Gaunt, R. E., Mijoule, G. and Swan, Y. (2019). An algebra of Stein operators. Journal of Mathematical Analysis and Applications 469(1), 260–279.
Griffiths, R. C. (1984). Characterization of infinitely divisible multivariate gamma distributions. Journal of Multivariate Analysis 15, 13–20. MR0755813 https://doi.org/10.1016/0047-259X(84)90064-2
Holm, H. and Alouini, M. S. (2004). Sum and difference of two squared correlated Nakagami variates in connection with the McKay distribution. IEEE Transactions on Communications 52, 1367–1376.
Krishnamoorthy, A. S. and Parthasarathy, M. (1951). A multivariate gamma-type distribution. The Annals of Mathematical Statistics 22, 549–557. MR0044790
Kusuoka, S. and Tudor, C. A. (2012). Stein’s method for invariant measures of diffusions via Malliavin calculus. Stochastic Processes and Their Applications 122, 1627–1651. MR2914766 https://doi.org/10.1016/j.spa.2012. 02.005
Ley, C., Reinert, G. and Swan, Y. (2017). Stein’s method for comparison of univariate distributions. Probability Surveys 14, 1–52. MR3595350 https://doi.org/10.1214/16-PS278
Ley, C. and Swan, Y. (2013). Local Pinsker inequalities via Stein’s discrete density approach. IEEE Transactions on Information Theory 59, 5584–5591. MR3096942 https://doi.org/10.1109/TIT.2013.2265392
Loeve, M. (1977). Probability Theory, I, 4th ed. Springer. MR0651017
Luk, H. M. (1994). Stein’s method for the gamma distribution and related statistical applications. ProQuest. MR2693204
Nourdin, I. and Peccati, G. (2009a). Noncentral convergence of multiple integrals. Annals of Probability 37, 1412–1426. MR2546749 https://doi.org/10.1214/08-AOP435
Nourdin, I. and Peccati, G. (2009b). Stein’s method on Wiener chaos. Probability Theory and Related Fields 145, 75–118. MR2520122 https://doi.org/10.1007/s00440-008-0162-x
Nourdin, I. and Peccati, G. (2010). Cumulants on the Wiener space. Journal of Functional Analysis 258, 3775– 3791. MR2606872 https://doi.org/10.1016/j.jfa.2009.10.024
Nourdin, I. and Peccati, G. (2012). Normal Approximations Using Malliavin Calculus: From Stein’s Method to Universality. Cambridge Tracts in Mathematics. Cambridge University. MR2962301 https://doi.org/10.1017/CBO9781139084659
Nourdin, I. and Poly, G. (2012). Convergence in law in the second Wiener/Wigner chaos. Electronic Communications in Probability 17, 1–12. MR2970700 https://doi.org/10.1214/ecp.v17-2023
Peköz, E., Röllin, A. and Ross, N. (2013). Degree asymptotics with rates for preferential attachment random graphs. The Annals of Applied Probability 23, 1188–1218. MR3076682 https://doi.org/10.1214/12-AAP868
Pickett, A. (2004). Rates of convergence of Chi-square approximations via Stein’s method. (Ph.D.)-Thesis, University of Oxford.
Royen, T. (2016). A note on the existence of the multivariate gamma distribution. arXiv preprint. Available at arXiv:1606.04747.
Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, II, 583–602. MR0402873
Stein, C. (1986). Approximate Computation of Expectations. Lecture Notes-Monograph Series 7. IMS. MR0882007
Teschl, G. (2012). Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics 140. Providence: Amer. Math. Soc. MR2961944 https://doi.org/10.1090/gsm/140
Vere-Jones, D. (1997). Alpha-permanents and their applications to multivariate gamma, negative binomial and ordinary binomial distributions. New Zealand Journal of Mathematics 26, 125–149. MR1450811
Zolotarev, V. M. (1983). Probability metrics. Teoriâ Veroâtnostej I Ee Primeneniâ 28, 264–287. MR0700210