[en] In many chemical and biochemical processes, it is fundamental to accurately predict flow dynamics within reactors of different sizes and its influence on reactions and their kinetics. Computational Fluid Dynamics can provide detailed modeling about hydrodynamics. The objective of the present work is to assess the abilities of CFD to simulate free-surface turbulent flow within baffled stirred-tanks reactors. Transient simulations are carried out using a homogeneous Euler-Euler multiphase approach, the Volume-of-Fluid (VOF) method, with a Realizable k-e turbulence model. Two methods are considered to account for the impeller motion, namely the Multiple Reference Frame (MRF) and Sliding Mesh (SM) approaches. Global and local results obtained by CFD are presented by means of statistical analysis, including the estimation of characteristic turbulent length scales. Instantaneous numerical data fields obtained with the SM model are then interpreted using modal decompositions methods, i.e. the Proper Orthogonal Decomposition (POD) and the Dynamic Mode Decomposition (DMD) in order to extract their dominant spatial structures with their time behavior. All simulations are discussed based on comparison with experimental data.
Disciplines :
Chemical engineering
Author, co-author :
de Lamotte, Anne ; Université de Liège - ULiège > Form.doct. sc. ingé. (chim. appl. - Bologne)
Delafosse, Angélique ; Université de Liège - ULiège > Department of Chemical Engineering > Génie de la réaction et des réacteurs chimiques
Calvo, Sébastien ; Université de Liège - ULiège > Department of Chemical Engineering > Génie de la réaction et des réacteurs chimiques
Toye, Dominique ; Université de Liège - ULiège > Department of Chemical Engineering > Génie de la réaction et des réacteurs chimiques
Language :
English
Title :
Identifying dominant spatial and time characteristics of flow dynamics within free-surface baffled stirred-tanks from CFD simulations
Alopaeus, V., Koskinen, J., Keskinen, K.I., Simulation of the population balances for liquid-liquid systems in a nonideal stirred tank. Part 1 Description and qualitative validation of the model. Chem. Eng. Sci. 54:24 (1999), 5887–5899.
Ansys, ANSYS Fluent Theory Guide. 2017, ANSYS, Inc.
Aubin, J., Fletcher, D., Xuereb, C., Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme. Exp. Therm. Fluid Sci. 28:5 (2004), 431–445.
Baldi, S., Yianneskis, M., On the quantification of energy dissipation in the impeller stream of a stirred vessel from fluctuating velocity gradient measurements. Chem. Eng. Sci. 59:13 (2004), 2659–2671.
Berkooz, G., Holmes, P., Lumley, J.L., The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25:1 (1993), 539–575.
Blais, B., Bertrand, F., CFD-DEM investigation of viscous solid-liquid mixing: impact of particle properties and mixer characteristics. Chem. Eng. Res. Des. 118:Suppl. C (2017), 270–285.
Brucato, A., Ciofalo, M., Grisafi, F., Tocco, R., On the simulation of stirred tank reactors via computational fluid dynamics. Chem. Eng. Sci. 55:2 (2000), 291–302.
Buffo, A., Vanni, M., Marchisio, D., Multidimensional population balance model for the simulation of turbulent gas-liquid systems in stirred tank reactors. Chem. Eng. Sci. 70:Suppl. C (2012), 31–44.
Bugay, S., Analyse locale des échelles caractéristiques du mélange: Application de la technique P.I.V. aux cuves agitées. (Ph.D. Thesis), 1998, Institut National des Sciences Appliquées, Toulouse, France.
Bujalski, W., Jaworski, Z., Nienow, A., CFD study of homogenization with dual Rushton turbines – comparison with experimental results: Part II: the multiple reference frame. Chem. Eng. Res. Des. 80:1 (2002), 97–104.
Chatterjee, A., An introduction to the proper orthogonal decomposition. Curr. Sci. 78:7 (2000), 808–817.
Cheng, J.C., Fox, R.O., Kinetic modeling of nanoprecipitation using CFD coupled with a population balance. Ind. Eng. Chem. Res. 49:21 (2010), 10651–10662.
Coroneo, M., Montante, G., Paglianti, A., Magelli, F., CFD prediction of fluid flow and mixing in stirred tanks: numerical issues about the RANS simulations. Comput. Chem. Eng. 35:10 (2011), 1959–1968.
de Lamotte, A., Delafosse, A., Calvo, S., Delvigne, F., Toye, D., Investigating the effects of hydrodynamics and mixing on mass transfer through the free-surface in stirred tank bioreactors. Chem. Eng. Sci. 172 (2017), 125–142.
de Lamotte, A., Delafosse, A., Calvo, S., Toye, D., Analysis of PIV measurements using modal decomposition techniques, POD and DMD, to study flow structures and their dynamics within a stirred-tank reactor. Chem. Eng. Sci. 178 (2018), 348–366.
Deglon, D., Meyer, C., CFD modelling of stirred tanks: numerical considerations. Miner. Eng. 19:10 (2006), 1059–1068.
Delafosse, A., Calvo, S., Collignon, M.-L., Delvigne, F., Crine, M., Toye, D., Euler-Lagrange approach to model heterogeneities in stirred tank bioreactors – comparison to experimental flow characterization and particle tracking. Chem. Eng. Sci. 134 (2015), 457–466.
Delafosse, A., Collignon, M.-L., Calvo, S., Delvigne, F., Crine, M., Thonart, P., Toye, D., CFD-based compartment model for description of mixing in bioreactors. Chem. Eng. Sci. 106 (2014), 76–85.
Delafosse, A., Liné A., Morchain, J., Guiraud, P., LES and URANS simulations of hydrodynamics in mixing tank: comparison to PIV experiments. Chem. Eng. Res. Des. 86:12 (2008), 1322–1330.
Derksen, J., Doelman, M., Van den Akker, H., Three-dimensional LDA measurements in the impeller region of a turbulently stirred tank. Exp. Fluids 27:6 (1999), 522–532.
Ducci, A., Doulgerakis, Z., Yianneskis, M., Decomposition of flow structures in stirred reactors and implications for mixing enhancement. Ind. Eng. Chem. Res. 47:10 (2008), 3664–3676.
Escudié R., Liné A., Experimental analysis of hydrodynamics in a radially agitated tank. AIChE J. 49:3 (2003), 585–603.
Escudié R., Liné A., Analysis of turbulence anisotropy in a mixing tank. Chem. Eng. Sci. 61:9 (2006), 2771–2779.
Gabriele, A., Nienow, A., Simmons, M., Use of angle resolved PIV to estimate local specific energy dissipation rates for up- and down-pumping pitched blade agitators in a stirred tank. Chem. Eng. Sci. 64:1 (2009), 126–143.
Galletti, C., Brunazzi, E., Pintus, S., Paglianti, A., Yianneskis, M., Triple products and turbulence states in a radially stirred tank with 3-D laser anemometry. Chem. Eng. Res. Des. 82:9 (2004), 1214–1228.
Haringa, C., Noorman, H.J., Mudde, R.F., Lagrangian modeling of hydrodynamic-kinetic interactions in (bio)chemical reactors: practical implementation and setup guidelines. Chem. Eng. Sci. 157:Suppl. C (2017), 159–168.
Hartmann, H., Derksen, J., Montavon, C., Pearson, J., Hamill, I., van den Akker, H., Assessment of large eddy and rans stirred tank simulations by means of lda. Chem. Eng. Sci. 59:12 (2004), 2419–2432.
Hartmann, H., Derksen, J.J., Van den Akker, H.E.A., Mixing times in a turbulent stirred tank by means of LES. AIChE J. 52:11 (2006), 3696–3706.
Hinze, J., Turbulence: An Introduction to Its Mechanism and Theory. McGraw-Hill series in Mechanical Engineering. 1959, McGraw-Hill.
Howard, C., Gupta, S., Abbas, A., Langrish, T.A., Fletcher, D.F., Proper orthogonal decomposition (POD) analysis of CFD data for flow in an axisymmetric sudden expansion. Chem. Eng. Res. Des. 123:Suppl. C (2017), 333–346.
Jakobsen, H.A., Single phase flow. Chemical Reactor Modeling: Multiphase Reactive Flows, 2008, Springer, Berlin Heidelberg, 3–185.
Jaworski, Z., Bujalski, W., Otomo, N., Nienow, A., CFD study of homogenization with dual Rushton turbines – comparison with experimental results: Part I: Initial studies. Chem. Eng. Res. Des. 78:3 (2000), 327–333.
Jaworski, Z., Nienow, A.W., CFD modelling of continuous precipitation of barium sulphate in a stirred tank. Chem. Eng. J. 91:2 (2003), 167–174 (chemreactor – 15 S.I.).
Khan, F., Rielly, C., Hargrave, G., A multi-block approach to obtain angle-resolved PIV measurements of the mean flow and turbulence fields in a stirred vessel. Chem. Eng. Technol. 27:3 (2004), 264–269.
Lane, G.L., Improving the accuracy of CFD predictions of turbulence in a tank stirred by a hydrofoil impeller. Chem. Eng. Sci. 169:Suppl. C (2017), 188–211.
Liné A., Eigenvalue spectrum versus energy density spectrum in a mixing tank. Chem. Eng. Res. Des. 108 (2016), 13–22.
Liné A., Gabelle, J.-C., Morchain, J., Anne-Archard, D., Augier, F., On POD analysis of PIV measurements applied to mixing in a stirred vessel with a shear thinning fluid. Chem. Eng. Res. Des. 91:11 (2013), 2073–2083.
Menter, F.R., Egorov, Y., The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description. Flow, Turbul. Combust. 85:1 (2010), 113–138.
Micheletti, M., Baldi, S., Yeoh, S., Ducci, A., Papadakis, G., Lee, K., Yianneskis, M., On spatial and temporal variations and estimates of energy dissipation in stirred reactors. Chem. Eng. Res. Des. 82:9 (2004), 1188–1198.
Montante, G., Lee, K., Brucato, A., Yianneskis, M., Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels. Chem. Eng. Sci. 56:12 (2001), 3751–3770.
Montante, G., Micale, G., Magelli, F., Brucato, A., Experiments and CFD predictions of solid particle distribution in a vessel agitated with four pitched blade turbines. Chem. Eng. Res. Des. 79:8 (2001), 1005–1010.
Morchain, J., Gabelle, J., Cockx, A., A coupled population balance model and CFD approach for the simulation of mixing issues in lab-scale and industrial bioreactors. AIChE J. 60:1 (2014), 27–40.
Petitti, M., Nasuti, A., Marchisio, D.L., Vanni, M., Baldi, G., Mancini, N., Podenzani, F., Bubble size distribution modeling in stirred gas-liquid reactors with QMOM augmented by a new correction algorithm. AIChE J. 56:1 (2010), 36–53.
Ranganathan, P., Sivaraman, S., Investigations on hydrodynamics and mass transfer in gas-liquid stirred reactor using computational fluid dynamics. Chem. Eng. Sci. 66:14 (2011), 3108–3124.
Reuss, M., Schmalzriedt, S., Jenne, M., Application of Computational Fluid dynamics (CFD) to Modeling Stirred Tank Bioreactors. 2000, Springer, Berlin, Heidelberg, 207–246.
Roussinova, V.T., Kresta, S.M., Weetman, R., Resonant geometries for circulation pattern macroinstabilities in a stirred tank. AIChE J. 50:12 (2004), 2986–3005.
Rowley, C.W., Mezić I., Bagheri, S., Schlatter, P., Henningson, D.S., Spectral analysis of nonlinear flows. J. Fluid Mech. 641 (2009), 115–127.
Rudniak, L., Machniewski, P.M., Milewska, A., Molga, E., CFD modelling of stirred tank chemical reactors: homogeneous and heterogeneous reaction systems. Chem. Eng. Sci. 59:22 (2004), 5233–5239.
Sahu, A., Kumar, P., Patwardhan, A., Joshi, J., CFD modelling and mixing in stirred tanks. Chem. Eng. Sci. 54:13 (1999), 2285–2293.
Sakowitz, A., Mihaescu, M., Fuchs, L., Flow decomposition methods applied to the flow in an IC engine manifold. Appl. Therm. Eng. 65:1–2 (2014), 57–65.
Schmid, P.J., Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656 (2010), 5–28.
Schmid, P.J., Application of the dynamic mode decomposition to experimental data. Exp. Fluids 50:4 (2011), 1123–1130.
Schmid, P.J., Violato, D., Scarano, F., Decomposition of time-resolved tomographic PIV. Exp. Fluids 52:6 (2012), 1567–1579.
Semeraro, O., Bellani, G., Lundell, F., Analysis of time-resolved PIV measurements of a confined turbulent jet using POD and Koopman modes. Exp. Fluids 53:5 (2012), 1203–1220.
Sheng, J., Meng, H., Fox, R.O., Validation of CFD simulations of a stirred tank using particle image velocimetry data. Can. J. Chem. Eng. 76:3 (1998), 611–625.
Sirovich, L., Turbulence and the dynamics of coherent structures. I – Coherent structures. Q. Appl. Math. 45 (1987), 561–571.
Sweere, A., Luyben, K., Kossen, N., Regime analysis and scale-down: tools to investigate the performance of bioreactors. Enzyme Microb. Technol. 9:7 (1987), 386–398.
Tamburini, A., Cipollina, A., Micale, G., Brucato, A., Ciofalo, M., CFD simulations of dense solid-liquid suspensions in baffled stirred tanks: prediction of solid particle distribution. Chem. Eng. J. 223:Suppl. C (2013), 875–890.
Taylor, G.I., Statistical theory of turbulence. Proc. Roy. Soc. Lond. A: Math., Phys. Eng. Sci. 151:873 (1935), 421–444.
Tissot, G., Cordier, L., Benard, N., Noack, B.R., Model reduction using dynamic mode decomposition. C. R. Méc. 342:6–7 (2014), 410–416.
Trad, Z., Fontaine, J.-P., Larroche, C., Vial, C., Experimental and numerical investigation of hydrodynamics and mixing in a dual-impeller mechanically-stirred digester. Chem. Eng. J. 329:Suppl. C (2017), 142–155.
Weheliye, W.H., Cagney, N., Rodriguez, G., Micheletti, M., Ducci, A., Mode decomposition and lagrangian structures of the flow dynamics in orbitally shaken bioreactors. Phys. Fluids, 30(3), 2018, 033603.
Wernersson, E.S., Trägårdh, C., Turbulence characteristics in turbine-agitated tanks of different sizes and geometries. Chem. Eng. J. 72:2 (1999), 97–107.
Yeoh, S., Papadakis, G., Yianneskis, M., Determination of mixing time and degree of homogeneity in stirred vessels with large eddy simulation. Chem. Eng. Sci. 60:8 (2005), 2293–2302.
Zakrzewska, B., Jaworski, Z., CFD modeling of turbulent jacket heat transfer in a Rushton turbine stirred vessel. Chem. Eng. Technol. 27:3 (2004), 237–242.