Article (Scientific journals)
Convergence of Pascal-Like Triangles in Parry–Bertrand Numeration Systems
Stipulanti, Manon
2019In Theoretical Computer Science, 758, p. 42-60
Peer Reviewed verified by ORBi
 

Files


Full Text
Parry-postprint.pdf
Author postprint (897.2 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Binomial coefficients; Words; Pascal triangles; Parry numbers; Bertrand numeration systems
Abstract :
[en] We pursue the investigation of generalizations of the Pascal triangle based on binomial coefficients of finite words. These coefficients count the number of times a finite word appears as a subsequence of another finite word. The finite words occurring in this paper belong to the language of a Parry numeration system satisfying the Bertrand property, i.e., we can add or remove trailing zeroes to valid representations. It is a folklore fact that the Sierpiński gasket is the limit set, for the Hausdorff distance, of a convergent sequence of normalized compact blocks extracted from the classical Pascal triangle modulo 2. In a similar way, we describe and study the subset of [0, 1] × [0, 1] associated with the latter generalization of the Pascal triangle modulo a prime number.
Disciplines :
Mathematics
Author, co-author :
Stipulanti, Manon  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
Convergence of Pascal-Like Triangles in Parry–Bertrand Numeration Systems
Publication date :
2019
Journal title :
Theoretical Computer Science
ISSN :
0304-3975
Publisher :
Elsevier, Netherlands
Volume :
758
Pages :
42-60
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Available on ORBi :
since 30 August 2018

Statistics


Number of views
96 (12 by ULiège)
Number of downloads
110 (5 by ULiège)

Scopus citations®
 
1
Scopus citations®
without self-citations
0
OpenCitations
 
1
OpenAlex citations
 
1

Bibliography


Similar publications



Contact ORBi