2018_Loubota Panzou et al_What controls local-scale aboveground biomass variation in central Africa, testing structural, composition and architectural attributes.pdf
Tree allometry; AGB estimation; Basal area; Wood density; Total height; Crown size; Central Africa
Abstract :
[en] Tropical forests play a key role in regulating the terrestrial carbon cycle and climate change by storing a large amount of carbon. Yet, there is considerable uncertainty about the amount and spatial variation of aboveground biomass (AGB), especially in the relatively less studied African tropical forests. In this study, we explore the local-scale variation and determinants of plot-level AGB, between and within two types of forests, the Celtis and Manilkara forests, growing under the same climate but on different geological substrates in the northern Republic of Congo. In each forest site, all trees ≥10 cm diameter were censured in 36 × 1-ha plots and we measured tree height and crown size using a subsample of 18 × 1-ha of these plots. We developed height-diameter and crown-diameter allometric relationships and tested whether they differed between the two sites. For each 1-ha plot, we further estimated the AGB and calculated structural attributes (stem density and basal area), composition attributes (wood density) and architectural attributes (tree height and crown size), the latter being derived from site-specific allometric relationships. We found strong between-site differences in height-diameter and crown-diameter allometries. For a given diameter, trees were taller in the Celtis forest while they had larger crown in the Manilkara forest. Similar trends were found for the sixteen species present in both forest sites, suggesting an environmental control of tree allometry. Although there were some between-site differences in forest structure, composition and architecture, we did not detect any significant difference in mean AGB between the Celtis and the Manilkara forests. The AGB variation was related to the heterogeneous distribution of large trees, and influenced by basal area, height and crown dimensions, and to a lesser extent wood density. These forest attributes have strong practical implications on emerging remote-sensing technologies for carbon monitoring in tropical forests.
Fayolle, Adeline ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Gestion des ressources forestières et des milieux naturels
Feldpausch, Ted R.; University of Exeter > Geography
Ligot, Gauthier ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Laboratoire de Foresterie des régions trop. et subtropicales
Doucet, Jean-Louis ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Laboratoire de Foresterie des régions trop. et subtropicales
Forni, Eric; CIRAD
Zombo, Isaac; CIB-OLAM
Mazengue, Mathurin; Mokabi SA
Loumeto, Jean-Joel; Université Marien Ngouabi > Faculté des Sciences et Techniques > Laboratoire de botanique et d'écologie
Gourlet-Fleury, Sylvie; CIRAD
Language :
English
Title :
What controls local-scale aboveground biomass variation in central Africa? Testing structural, composition and architectural attributes
Publication date :
July 2018
Journal title :
Forest Ecology and Management
ISSN :
0378-1127
eISSN :
1872-7042
Publisher :
Elsevier, Netherlands
Volume :
429
Pages :
570-578
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Variations de l'allométrie des arbres et ses conséquences sur l'estimation de la biomasse et des stocks de carbone en Afrique centrale
Funders :
IFS - International Foundation for Science F.R.S.-FNRS - Fonds de la Recherche Scientifique Nature+ Republic of Congo (OGES-Congo)
Funding text :
This work was supported by the DynAfFor project supported by a
French Fund for the Global Environment (grant numbers Nos.
CZZ1636.01D and CZZ1636.02D); International Foundation for Science
(grant number D/5822-1); F.R.S-FNRS (grant number 2017/v3/5/332 –
IB/JN – 9500), Nature+ (asbl, Belgium) and the Republic of Congo
(OGES-Congo). The fieldwork of this study was conducted in the permanent
design of DynAfFor and P3FAC projects, supported by the
French Fund for the Global Environment, implemented by ATIBT/
COMIFAC/Nature+/CIRAD/Gembloux Agro-Bio Tech/CIB-Olam and
Mokabi SA logging companies. We thank the team members of CIBOlam
and MOKABI SA logging companies. The authors are specifically
thankful to Mercier Mayinga (CIB-Olam) and Arnaud N'Gokaka
(Mokabi SA) for facilitating field measurements. We are grateful to Dr.
Jean-François Gillet for help with plant identification. We are deeply
grateful to Ecology group of the School of Geography during our research
visit at the University of Exeter (UK).
Aiba, S.I., Kitayama, K., Structure, composition and species diversity in an altitude-substrate matrix of rain forest tree communities on Mount Kinabalu. Borneo. Plant Ecol. 140 (1999), 139–157.
Akaike, H., A new look at the statistical model identification. IEEE Trans. Automat. Control 19:6 (1974), 716–723.
Antin, C., Pélissier, R., Vincent, G., Couteron, P., Crown allometries are less responsive than stem allometry to tree size and habitat variations in an Indian monsoon forest. Trees – Struct. Funct. 27 (2013), 1485–1495, 10.1007/s00468-013-0896-7.
Asner, G.P., Mascaro, J., Muller-Landau, H.C., Vieilledent, G., Vaudry, R., Rasamoelina, M., Hall, J.S., van Breugel, M., A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168 (2012), 1147–1160, 10.1007/s00442-011-2165-z.
Avitabile, V., Herold, M., Heuvelink, G.B.M., Lewis, S.L., Phillips, O.L., et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 22 (2016), 1406–1420, 10.1111/gcb.13139.
Baker, T.R., Phillips, O.L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., et al. Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob. Chang. Biol. 10:5 (2004), 545–562, 10.1111/j.1365-2486.2004.00751.x.
Bastin, J.-F., Barbier, N., Réjou-Méchain, M., Fayolle, A., Gourlet-Fleury, S., Maniatis, D., et al. Seeing Central African forests through their largest trees. Sci. Rep., 5, 2015, 13156, 10.1038/srep13156.
Blanchard, E., Birnbaum, P., Ibanez, T., Boutreux, T., Antin, C., Ploton, P., Vincent, G., et al. Contrasted allometries between stem diameter, crown area, and tree height in five tropical biogeographic areas. Trees – Struct. Funct. 30 (2016), 1953–1968, 10.1007/s00468-016-1424-3.
Chave, J., Coomes, D., Jansen, S., Lewis, S.L., Swenson, N.G., Zanne, A.E., Towards a worldwide wood economics spectrum. Ecol. Lett. 12 (2009), 351–366, 10.1111/j.1461-0248.2009.01285.x.
Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20 (2014), 3177–3190, 10.1111/gcb.12629.
Coomes, D.A., Flores, O., Holdaway, R., Jucker, T., Lines, E.R., Vanderwel, M.C., Wood production response to climate change will depend critically on forest composition and structure. Glob. Change Biol. 20 (2014), 3632–3645, 10.1111/gcb.12622.
Doetterl, S., Kearsley, E., Bauters, M., Hufkens, K., Lisingo, J., Baert, G., Verbeeck, H., Boeckx, P., Aboveground vs. belowground carbon stocks in African tropical lowland rainforest: Drivers and implications. PLoS One 10 (2015), 1–14, 10.1371/journal.pone.0143209.
Douh, C., Daïnou, K., Loumeto, J.J., Moutsambote, J.M., Fayolle, A., Tosso, F., Doucet, J.L., Soil seed bank characteristics in two central African forest types and implications for forest restoration. For. Ecol. Manage. 409 (2018), 766–776, 10.1016/j.foreco.2017.12.012.
Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., 2006. Guidelines for national greenhouse gas inventories Technical Report 4 Intergovernmental Panel on Climate Change (IPCC) IGES, Japan Prepared by the National Greenhouse Gas Inventories Programme.
Fayolle, A., Engelbrecht, B., Freycon, V., Mortier, F., Swaine, M., et al. Geological substrates shape tree species and trait distributions in African moist forests. PLoS One 7 (2012), 12–14, 10.1371/journal.pone.0042381.
Fayolle, A., Picard, N., Doucet, J.L., Swaine, M., Bayol, N., Bénédet, F., Gourlet-Fleury, S., A new insight in the structure, composition and functioning of central African moist forests. For. Ecol. Manage. 329 (2014), 195–205, 10.1016/j.foreco.2014.06.014.
Fayolle, A., Loubota Panzou, G.J., Drouet, T., Swaine, M.D., Bauwens, S., et al. Taller trees, denser stands and greater biomass in semi-deciduous than in evergreen lowland central African forests. For. Ecol. Manage. 374 (2016), 42–50, 10.1016/j.foreco.2016.04.033.
Feldpausch, T.R., Lloyd, J., Lewis, S.L., Brienen, R.J.W., Gloor, M., et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9 (2012), 3381–3403, 10.5194/bg-9-3381-2012.
Goodman, R.C., Phillips, O.L., Baker, T.R., The importance of crown dimensions to improve tropical tree biomass estimates. Ecol. Appl. 24 (2014), 680–698, 10.1890/13-0070.1.
Gourlet-Fleury, S., Rossi, V., Rejou-Mechain, M., Freycon, V., Fayolle, A., et al. Environmental filtering of dense-wooded species controls above-ground biomass stored in African moist forests. J. Ecol. 99 (2011), 981–990, 10.1111/j.1365-2745.2011.01829.x.
Hardy, O.J., Born, C., Budde, K., Daïnou, K., Dauby, G., et al. Comparative phylogeography of African rain forest trees: a review of genetic signatures of vegetation history in the Guineo-Congolian region. Comptes Rendus - Geosci. 345 (2013), 284–296, 10.1016/j.crte.2013.05.001.
Imani, G., Boyemba, F., Lewis, S., Nabahungu, N.L., Calders, K., et al. Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa. PLoS One 12 (2017), 1–20, 10.1371/journal.pone.0179653.
Jucker, T., Bouriaud, O., Coomes, D.A., Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Funct. Ecol. 29 (2015), 1078–1086, 10.1111/1365-2435.12428.
Jucker, T., Caspersen, J., Chave, J., Antin, C., Barbier, N., et al. Allometric equations for integrating remote sensing imagery into forest monitoring programmes. Glob. Chang. Biol. 23 (2017), 177–190, 10.1111/gcb.13388.
Kearsley, E., de Haulleville, T., Hufkens, K., Kidimbu, A., Toirambe, B., et al. Conventional tree height-diameter relationships significantly overestimate aboveground carbon stocks in the Central Congo Basin. Nat. Commun., 4, 2013, 2269, 10.1038/ncomms3269.
King, D.A., Allometry and life history of tropical trees. J. Trop. Ecol. 12 (1996), 25–44, 10.1017/S0266467400009299.
Lewis, S.L., Lopez-Gonzalez, G., Sonké B., Affum-Baffoe, K., Baker, T.R., et al. Increasing carbon storage in intact African tropical forests. Nature 457 (2009), 1003–1006, 10.1038/nature07771.
Lewis, S., Sonké B., Sunderland, T., Begne, S.K., Lopez-Gonzalez, G., et al. Above-ground biomass and structure of 260 African tropical forests. Philos. Trans. R. Soc. Lond. B. Biol. Sci., 368, 2013, 20120295.
Loubota Panzou, G.J., Doucet, J.L., Loumeto, J.J., Biwole, A., Bauwens, S., Fayolle, A., Biomasse et stocks de carbone des forêts tropicales africaines (synthèse bibliographique). Biotechnol. Agron. Soc. Environ. 20 (2016), 508–522.
Lutz, J.A., Furniss, T.J., Johnson, D.J., Davies, S.J., Allen, D., Alonso, A., et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr., 2018, 10.1111/geb.12747 (in press).
Meyer, V., Saatchi, S., Clark, D.B., Keller, M., Vincent, G., et al. Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes. Biogeosciences 15 (2018), 3377–3390, 10.5194/bg-15-3377-2018.
Mitchard, E.T.A., Feldpausch, T.R., Brienen, R.J.W., Lopez-Gonzalez, G., Monteagudo, A., et al. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Glob. Ecol. Biogeogr. 23 (2014), 935–946, 10.1111/geb.12168.
Pan, Y., Birdsey, R., Fang, J., Houghton, R.A., Kauppi, P., et al. A Large and Persistent Carbon Sink in the World's Forests. Science 333 (2011), 988–994.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team, 2017. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-131, < https://CRAN.R-project.org/package=nlme>.
Ploton, P., Barbier, N., Momo, S.T., Rejou-Mechain, M., Boyemba Bosela, F., et al. Closing a gap in tropical forest biomass estimation: taking crown mass variation into account in pantropical allometries. Biogeosciences 13 (2016), 1571–1585, 10.5194/bg-13-1571-2016.
R Core Team, 2017. version 3.4.1. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Réjou-Méchain, M., Flores, O., Pélissier, R., Fayolle, A., Fauvet, N., Gourlet-Fleury, S., Tropical tree assembly depends on the interactions between successional and soil filtering processes. Glob. Ecol. Biogeogr. 23 (2014), 1440–1449, 10.1111/geb.12222.
Réjou-Méchain, M., Tanguy, A., Piponiot, C., Chave, J., Hérault, B., Biomass: an R package for estimating above-ground biomass and its uncertainty in tropical forests. Methods Ecol. Evol. 8 (2017), 1163–1167, 10.1111/2041-210X.12753.
Saatchi, S.S., Harris, N.L., Brown, S., Lefsky, M., Mitchard, E.T., Salas, W., et al. Benchmark map of forest carbon stocks in tropical regions across three continents. PNAS 108:24 (2011), 9899–9904, 10.1073/pnas.1019576108.
Slik, J.W.F., Paoli, G., McGuire, K., Amaral, I., Barroso, J., et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Glob. Ecol. Biogeogr. 22 (2013), 1261–1271, 10.1111/geb.12092.
Sullivan, M.J.P., Lewis, S.L., Hubau, W., Qie, L., Baker, T.R., et al. Field methods for sampling tree height for tropical forest biomass estimation. Methods Ecol. Evol. 9 (2018), 1179–1189, 10.1111/2041-210X.12962.
Verbeeck, H., Boeckx, P., Steppe, K., Tropical forests: include Congo basin. Nature, 479(7372), 2011, 179, 10.1038/479179b.
Zanne, A., Lopez-Gonzalez, G., Coomes, D.A., Ilic, J., Jansen, S., et al. Towards a worldwide wood economics. Spectrum, 2009, 10.5061/dryad.234.