Cech, T.R., Steitz, J.A., The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157 (2014), 77–94.
Batista, P.J., Chang, H.Y., Long noncoding RNAs: cellular address codes in development and disease. Cell 152 (2013), 1298–1307.
Peschansky, V.J., Wahlestedt, C., Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9 (2014), 3–12.
Esteller, M., Non-coding RNAs in human disease. Nat. Rev. Genet. 12 (2011), 861–874.
de Almeida, R.A., Fraczek, M.G., Parker, S., Delneri, D., O'Keefe, R.T., Non-coding RNAs and disease: the classical ncRNAs make a comeback. Biochem. Soc. Trans. 44 (2016), 1073–1078.
Novikova, I.V., Hennelly, S.P., Sanbonmatsu, K.Y., Tackling structures of long noncoding RNAs. Int. J. Mol. Sci. 14 (2013), 23672–23684.
Bhartiya, D., Scaria, V., Genomic variations in non-coding RNAs: Structure, function and regulation. Genomics 107 (2016), 59–68.
Westhof, E., Auffinger, P., RNA tertiary structure. Meyers, R.A., (eds.) Encyclopedia of Analytical Chemistry, 2000, John Wiley & Sons Ltd., Chichester, 5222–5232.
Misra, V.K., Draper, D.E., On the role of magnesium ions in RNA stability. Biopolymers 48 (1998), 113–135.
Draper, D.E., A guide to ions and RNA structure. RNA 10 (2004), 335–343.
Grilley, D., Soto, A.M., Draper, D.E., Mg2 +-RNA interaction free energies and their relationship to the folding of RNA tertiary structures. Proc. Natl. Acad. Sci. U. S. A. 103 (2006), 14003–14008.
Filipovska, A., Razif, M.F., Nygard, K.K., Rackham, O., A universal code for RNA recognition by PUF proteins. Nat. Chem. Biol., 7(7), 2011, 425.
Choudhury, R., Tsai, Y.S., Dominguez, D., Wang, Y., Wang, Z., Engineering RNA endonucleases with customized sequence specificities. Nat. Commun., 3, 2012, 1147.
Cooke, A., Prigge, A., Opperman, L., Wickens, M., Targeted translational regulation using the PUF protein family scaffold. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 15870–15875.
Ferre-D'Amare, A.R., Zhou, K., Doudna, J.A., A general module for RNA crystallization. J. Mol. Biol. 279 (1998), 621–631.
Keel, A.Y., Rambo, R.P., Batey, R.T., Kieft, J.S., A general strategy to solve the phase problem in RNA crystallography. Structure 15 (2007), 761–772.
Pink, R.C., Wicks, K., Caley, D.P., Punch, E.K., Jacobs, L., Carter, D.R., Pseudogenes: pseudo-functional or key regulators in health and disease?. RNA 17 (2011), 792–798.
Mus, E., Hof, P.R., Tiedge, H., Dendritic BC200 RNA in aging and in Alzheimer's disease. Proc. Natl. Acad. Sci. U. S. A. 104 (2007), 10679–10684.
Lin, D., Pestova, T.V., Hellen, C.U., Tiedge, H., Translational control by a small RNA: dendritic BC1 RNA targets the eukaryotic initiation factor 4A helicase mechanism. Mol. Cell. Biol. 28 (2008), 3008–3019.
Rozhdestvensky, T.S., Kopylov, A.M., Brosius, J., Huttenhofer, A., Neuronal BC1 RNA structure: evolutionary conversion of a tRNA(Ala) domain into an extended stem-loop structure. RNA 7 (2001), 722–730.
Matelska, D., Steczkiewicz, K., Ginalski, K., Comprehensive classification of the PIN domain-like superfamily. Nucleic Acids Res. 45:12 (2017), 6995–7020.
Harmsen, M.M., De Haard, H.J., Properties, production, and applications of camelid single-domain antibody fragments. Appl. Microbiol. Biotechnol. 77 (2007), 13–22.
Wesolowski, J., Alzogaray, V., Reyelt, J., Unger, M., Juarez, K., Urrutia, M., Cauerhff, A., Danquah, W., Rissiek, B., Scheuplein, F., Schwarz, N., Adriouch, S., Boyer, O., Seman, M., Licea, A., Serreze, D.V., Goldbaum, F.A., Haag, F., Koch-Nolte, F., Single domain antibodies: promising experimental and therapeutic tools in infection and immunity. Med. Microbiol. Immunol. 198 (2009), 157–174.
Unger, M., Eichhoff, A.M., Schumacher, L., Strysio, M., Menzel, S., Schwan, C., Alzogaray, V., Zylberman, V., Seman, M., Brandner, J., Rohde, H., Zhu, K., Haag, F., Mittrucker, H.W., Goldbaum, F., Aktories, K., Koch-Nolte, F., Selection of nanobodies that block the enzymatic and cytotoxic activities of the binary Clostridium difficile toxin CDT. Sci. Rep., 5, 2015, 7850.
Sohier, J.S., Laurent, C., Chevigne, A., Pardon, E., Srinivasan, V., Wernery, U., Lassaux, P., Steyaert, J., Galleni, M., Allosteric inhibition of VIM metallo-beta-lactamases by a camelid nanobody. Biochem. J. 450 (2013), 477–486.
Chakravarty, R., Goel, S., Cai, W., Nanobody: the “magic bullet” for molecular imaging?. Theranostics 4 (2014), 386–398.
Dmitriev, O.Y., Lutsenko, S., Muyldermans, S., Nanobodies as probes for protein dynamics in vitro and in cells. J. Biol. Chem. 291 (2016), 3767–3775.
Harmansa, S., Alborelli, I., Bieli, D., Caussinus, E., Affolter, M., A nanobody-based toolset to investigate the role of protein localization and dispersal in Drosophila. eLife, 6, 2017.
Conrath, K.E., Lauwereys, M., Galleni, M., Matagne, A., Frere, J.M., Kinne, J., Wyns, L., Muyldermans, S., Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the camelidae. Antimicrob. Agents Chemother. 45 (2001), 2807–2812.
Vincke, C., Loris, R., Saerens, D., Martinez-Rodriguez, S., Muyldermans, S., Conrath, K., General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J. Biol. Chem. 284 (2009), 3273–3284.
Saerens, D., Pellis, M., Loris, R., Pardon, E., Dumoulin, M., Matagne, A., Wyns, L., Muyldermans, S., Conrath, K., Identification of a universal VHH framework to graft non-canonical antigen-binding loops of camel single-domain antibodies. J. Mol. Biol. 352 (2005), 597–607.
Treger, M., Westhof, E., Statistical analysis of atomic contacts at RNA–protein interfaces. J. Mol. Recognit. 14 (2001), 199–214.
Jeong, E., Kim, H., Lee, S.W., Han, K., Discovering the interaction propensities of amino acids and nucleotides from protein–RNA complexes. Mol. Cells 16 (2003), 161–167.
Lejeune, D., Delsaux, N., Charloteaux, B., Thomas, A., Brasseur, R., Protein–nucleic acid recognition: statistical analysis of atomic interactions and influence of DNA structure. Proteins 61 (2005), 258–271.
Arbabi Ghahroudi, M., Desmyter, A., Wyns, L., Hamers, R., Muyldermans, S., Selection and identification of single domain antibody fragments from camel heavy-chain antibodies. FEBS Lett. 414 (1997), 521–526.
Watson, P.Y., Fedor, M.J., The glmS riboswitch integrates signals from activating and inhibitory metabolites in vivo. Nat. Struct. Mol. Biol. 18 (2011), 359–363.
Klein, D.J., Ferre-D'Amare, A.R., Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 313 (2006), 1752–1756.
Abasi, M., Bazi, Z., Mohammadi-Yeganeh, S., Soleimani, M., Haghpanah, V., Zargami, N., Ghanbarian, H., 7SK small nuclear RNA transcription level down-regulates in human tumors and stem cells. Med. Oncol., 33, 2016, 128.
Doherty, E.A., Doudna, J.A., The P4–P6 domain directs higher order folding of the tetrahymena ribozyme core. Biochemistry 36 (1997), 3159–3169.
Szabat, M., Pedzinski, T., Czapik, T., Kierzek, E., Kierzek, R., Structural aspects of the antiparallel and parallel duplexes formed by DNA, 2′-O-methyl RNA and RNA oligonucleotides. PLoS One, 10, 2015, e0143354.
Dumoulin, M., Conrath, K., Van Meirhaeghe, A., Meersman, F., Heremans, K., Frenken, L.G., Muyldermans, S., Wyns, L., Matagne, A., Single-domain antibody fragments with high conformational stability. Protein Sci. 11 (2002), 500–515.
Andrews, B.T., Capraro, D.T., Sulkowska, J.I., Onuchic, J.N., Jennings, P.A., Hysteresis as a marker for complex, overlapping landscapes in proteins. J. Phys. Chem. Lett. 4 (2013), 180–188.
Michel, F., Hysteresis and partial irreversibility of denaturation of DNA as a means of investigating the topology of base distribution constraints: application to a yeast rho- (petite) mitochondrial DNA. J. Mol. Biol. 89 (1974), 305–326.
Russell, A.P., Holleman, D.S., The thermal denaturation of DNA: average length and composition of denatured areas. Nucleic Acids Res. 1 (1974), 959–978.
Sherman, E.M., Holmes, S., Ye, J.D., Specific RNA-binding antibodies with a four-amino-acid code. J. Mol. Biol. 426 (2014), 2145–2157.
Koldobskaya, Y., Duguid, E.M., Shechner, D.M., Suslov, N.B., Ye, J., Sidhu, S.S., Bartel, D.P., Koide, S., Kossiakoff, A.A., Piccirilli, J.A., A portable RNA sequence whose recognition by a synthetic antibody facilitates structural determination. Nat. Struct. Mol. Biol. 18 (2011), 100–106.
Shao, Y., Huang, H., Qin, D., Li, N.S., Koide, A., Staley, J.P., Koide, S., Kossiakoff, A.A., Piccirilli, J.A., Specific recognition of a single-stranded RNA sequence by a synthetic antibody fragment. J. Mol. Biol. 428 (2016), 4100–4114.
Hu, Y., Romao, E., Vertommen, D., Vincke, C., Morales-Yanez, F., Gutierrez, C., Liu, C., Muyldermans, S., Generation of Nanobodies against SlyD and development of tools to eliminate this bacterial contaminant from recombinant proteins. Protein Expr. Purif. 137 (2017), 64–76.
Skerra, A., Pluckthun, A., Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. Science 240 (1988), 1038–1041.