[en] Quadratic and Linear Discriminant Analysis (QDA/LDA) are the most often applied classification rules under normality. In QDA, a separate covariance matrix is estimated for each group. If there are more variables than observations in the groups, the usual estimates are singular and cannot be used anymore. Assuming homoscedasticity, as in LDA, reduces the number of parameters to estimate. This rather strong assumption is however rarely verified in practice. Regularized discriminant techniques that are computable in high-dimension and cover the path between the two extremes QDA and LDA have been proposed in the literature. However, these procedures rely on sample covariance matrices. As such, they become inappropriate in presence of cellwise outliers, a type of outliers that is very likely to occur in high-dimensional datasets. In this talk, we propose cellwise robust counterparts of these regularized discriminant techniques by inserting cellwise robust covariance matrices. Our methodology results in a family of discriminant methods that (i) are robust against outlying cells, (ii) cover the gap between LDA and QDA and (iii) are computable in high-dimension. The good performance of the new methods is illustrated through simulated and real data examples.
Disciplines :
Mathematics
Author, co-author :
Aerts, Stéphanie ; Université de Liège - ULiège > HEC Liège : UER > UER Opérations : Informatique de gestion
Language :
English
Title :
Regularized discriminant analysis : a cellwise robust approach
Publication date :
03 July 2018
Number of pages :
Stéphanie
Event name :
International Conference on Robust Statistics 2018