

Cellwise robust regularized discriminant analysis

Stéphanie Aerts (University of Liège) Ines Wilms (Cornell University, KU Leuven)

ICORS, July 2018

Discriminant analysis

 $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ of dimension p, splitted into K groups, each having n_k observations

Goal: Classify new data x

 π_k prior probability $N_p(\mu_k, \Sigma_k)$ conditional distribution

Discriminant analysis

 $X = \{x_1, \dots, x_N\}$ of dimension p, splitted into K groups, each having n_k observations

Goal: Classify new data x

 π_k prior probability

 $N_{
ho}(oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)$ conditional distribution

Quadratic discriminant analysis (QDA) :

$$\max_{k} \left(-(\mathbf{x} - \boldsymbol{\mu}_{k})^{T} \boldsymbol{\Theta}_{k} (\mathbf{x} - \boldsymbol{\mu}_{k}) + \log(\det \boldsymbol{\Theta}_{k}) + 2\log \pi_{k} \right)$$

where
$$\mathbf{\Theta}_k := \mathbf{\Sigma}_k^{-1}$$

Linear discriminant analysis (LDA):

Homoscedasticity : $\Theta_k = \Theta \quad \forall k$

Discriminant analysis

In practice, the parameters μ_k, Θ_k or Θ are estimated by

the sample means \bar{x}_k

the inverse of the sample covariance matrices $\widehat{\Sigma}_k$

the inverse of the sample pooled covariance matrix $\widehat{\Sigma}_{\mathrm{pool}} = \frac{1}{N-K} \sum_{k=1}^K n_k \widehat{\Sigma}_k$

Example - Phoneme dataset

Hastie et al., 2009

N = 1717 records of a male voice

K = 2 phonemes : aa (like in barn) or ao (like in more)

p=256: log intensity of the sound across 256 frequencies

Correct classification performance

s-LDA	s-QDA
77.7	62.4

Example - Phoneme dataset

Hastie et al., 2009

N = 1717 records of a male voice

K=2 phonemes: aa (like in barn) or ao (like in more)

p=256: log intensity of the sound across 256 frequencies

Correct classification performance

s-LDA	s-QDA	
77.7	62.4	

 $\widehat{\Sigma}_k^{-1}$ inaccurate when p/n_k is large, not computable when $p>n_k$ $\widehat{\Sigma}_{\mathrm{nool}}^{-1}$ inaccurate when p/N is large, not computable when p>N

Objectives

Propose a family of discriminant methods that, unlike the classical approach, are

- computable and accurate in high dimension
- cover the path between LDA and QDA
- o robust against cellwise outliers

1. Computable in high dimension

Graphical Lasso QDA (Xu et al., 2014)

- Step 1 : Compute the sample means $ar{\pmb{x}}_k$ and covariance matrices $\widehat{\pmb{\Sigma}}_k$
- Step 2 : Graphical Lasso (Friedman et al, 2008) to estimate Θ_1,\ldots,Θ_K :

$$\max_{\boldsymbol{\Theta}_k} n_k \log \det(\boldsymbol{\Theta}_k) - n_k \mathrm{tr}\left(\boldsymbol{\Theta}_k \widehat{\boldsymbol{\Sigma}}_k\right) - \lambda_1 \sum_{i \neq j} |\boldsymbol{\theta}_{k,ij}|$$

Step 3 : Plug $\bar{\mathbf{z}}_1,\ldots,\bar{\mathbf{z}}_K$ and $\widehat{\boldsymbol{\Theta}}_1,\ldots,\widehat{\boldsymbol{\Theta}}_K$ into the quadratic rule

Note: Use pooled covariance matrix for Graphical Lasso LDA

1. Computable in high dimension

Graphical Lasso QDA (Xu et al., 2014)

- Step 1 : Compute the sample means $ar{\pmb{x}}_k$ and covariance matrices $\widehat{\pmb{\Sigma}}_k$
- Step 2 : Graphical Lasso (Friedman et al, 2008) to estimate Θ_1,\ldots,Θ_K :

$$\max_{\boldsymbol{\Theta}_k} n_k \log \det(\boldsymbol{\Theta}_k) - n_k \mathrm{tr}\left(\boldsymbol{\Theta}_k \widehat{\boldsymbol{\Sigma}}_k\right) - \lambda_1 \sum_{i \neq j} |\theta_{k,ij}|$$

- Step 3 : Plug $\bar{\mathbf{x}}_1, \dots, \bar{\mathbf{x}}_K$ and $\widehat{\boldsymbol{\Theta}}_1, \dots, \widehat{\boldsymbol{\Theta}}_K$ into the quadratic rule
- Note: Use pooled covariance matrix for Graphical Lasso LDA

2. Covering path between LDA and QDA

Joint Graphical Lasso DA (Price et al., 2015)

- Step 1 : Compute the sample means $ar{\pmb{x}}_k$ and covariance matrices $\widehat{\pmb{\Sigma}}_k$
- Step 2 : Joint Graphical Lasso (Danaher et al, 2014) to estimate Θ_1,\ldots,Θ_K :

$$\max_{\boldsymbol{\Theta}_1, \dots, \boldsymbol{\Theta}_K} \sum_{k=1}^K n_k \log \det(\boldsymbol{\Theta}_k) - n_k \mathrm{tr}(\boldsymbol{\Theta}_k \widehat{\boldsymbol{\Sigma}}_k) - \lambda_1 \sum_{k=1}^K \sum_{i \neq j} |\theta_{k, ij}| - \lambda_2 \sum_{k < k'} \sum_{i, j} |\theta_{k, ij} - \theta_{k', ij}|,$$

Step 3 : Plug $\widehat{\Theta}_1,\ldots,\widehat{\Theta}_K$ into the quadratic discriminant rule

2. Covering path between LDA and QDA

Joint Graphical Lasso DA (Price et al., 2015)

- Step 1 : Compute the sample means $ar{m{x}}_k$ and covariance matrices $\widehat{m{\Sigma}}_k$
- Step 2 : Joint Graphical Lasso (Danaher et al, 2014) to estimate $\Theta_1, \ldots, \Theta_K$:

$$\max_{\boldsymbol{\Theta}_1, \dots, \boldsymbol{\Theta}_K} \sum_{k=1}^K n_k \log \det(\boldsymbol{\Theta}_k) - n_k \mathrm{tr}(\boldsymbol{\Theta}_k \widehat{\boldsymbol{\Sigma}}_k) - \lambda_1 \sum_{k=1}^K \sum_{i \neq j} |\theta_{k, ij}| - \lambda_2 \sum_{k < k'} \sum_{i, j} |\theta_{k, ij} - \theta_{k', ij}|,$$

Step 3 : Plug $\widehat{\Theta}_1,\ldots,\widehat{\Theta}_K$ into the quadratic discriminant rule

Lack of robustness

3. Robustness against cellwise outliers

Robust Joint Graphical Lasso DA

- Step 1 : Compute *robust* m_k and S_k estimates
- Step 2 : Joint Graphical Lasso to estimate Θ_1,\ldots,Θ_K

$$\max_{\boldsymbol{\Theta}_1, \dots, \boldsymbol{\Theta}_K} \sum_{k=1}^K n_k \log \det(\boldsymbol{\Theta}_k) - n_k \mathrm{tr}(\boldsymbol{\Theta}_k \boldsymbol{S}_k) - \lambda_1 \sum_{k=1}^K \sum_{i \neq j} |\theta_{k, ij}| - \lambda_2 \sum_{k < k'} \sum_{i, j} |\theta_{k, ij} - \theta_{k', ij}|,$$

Step 3 : Plug $\pmb{m}_1,\ldots,\pmb{m}_K$ and $\widehat{\Theta}_1,\ldots,\widehat{\Theta}_K$ into the quadratic discriminant rule

Robust estimators

Robust estimators

Cellwise Observations Variables

 m_k : vector of marginal medians

 \boldsymbol{S}_k : cellwise robust covariance matrices

Cellwise robust covariance estimators

$$oldsymbol{S}_k = \left(egin{array}{cccc} s_{11} & \dots & s_{1i} & \dots & s_{1p} \ dots & & dots & & dots \ s_{i1} & \dots & s_{ij} & \dots & s_{ip} \ dots & & dots & & dots \ s_{p1} & \dots & s_{pj} & \dots & s_{pp} \end{array}
ight)$$

$$s_{ij} = \widehat{\mathsf{scale}}(X^i) \ \widehat{\mathsf{scale}}(X^j) \ \widehat{\mathsf{corr}}(X^i, X^j)$$

scale(.): Q_n -estimator (Rousseeuw and Croux, 1993) $\widehat{\text{corr}}(.,.)$: Kendall's correlation

$$\widehat{\mathsf{corr}}_{\mathrm{K}}(X^i, X^j) = \frac{2}{n(n-1)} \sum_{l < m} \mathsf{sign}\left((x_l^i - x_m^i)(x_l^j - x_m^j)\right).$$

(see Croux and Öllerer, 2015; Tarr et al., 2016)

Simulation study

Setting

K = 10 groups

 $n_k = 30$

p = 30

M = 1000 training and test sets

Classification Performance

Average percentage of correct classification

Estimation accuracy

Average Kullback-Leibler distance :

$$\mathsf{KL}(\widehat{\Theta}_1,\dots,\widehat{\Theta}_K;\Theta_1,\dots,\Theta_K) = \left(\sum_{k=1}^K -\log\det(\widehat{\Theta}_k\Theta_k^{-1}) + \mathsf{tr}(\widehat{\Theta}_k\Theta_k^{-1})\right) - \mathit{Kp}.$$

Uncontaminated scheme

Non-robust estimators	s-LDA	s-QDA	GL-LDA	GL-QDA	JGL-DA
p = 30 CC	77.7	NA	80.5	83.0	83.5
KL	30.29	NA	21.87	40.41	5.03
Robust estimators	r-LDA	r-QDA	rGL-LDA	rGL-QDA	rJGL-DA
p = 30 CC	76.1	59.7	77.4	79.7	80.1
KL	22.86	139.18	22.98	44.57	11.02

Contaminated scheme : 5% of cellwise contamination

Correct classification percentages, p = 30

Example 1 - Phoneme dataset

N = 1717K = 2

p = 256

Correct classification performance

s-LDA 77.7		GL-LDA 81.4	GL-QDA 74.9	JGL-DA 78.4
	ODA	CL LDA	"CL ODA	ICL DA
81.1	74.7	81.7	rGL-QDA 76.0	76.7

 $\textit{N}_{\rm train} = 1030, \; \textit{N}_{\rm test} = 687, \; \text{averaged over } 10 \; \text{splits}$

Conclusion

The proposed discriminant methods:

- are computable in high dimension
- 2 cover the path between LDA and QDA
- are robust against cellwise outliers
- detect rowwise and cellwise outliers

Code publicly available

http://feb.kuleuven.be/ines.wilms/software

References

- S. Aerts, I. Wilms, Cellwise robust regularized discriminant analysis. Statistical Analysis and Data Mining, 10: 436–447, 2017.
- C. Croux and V. Öllerer. Robust high-dimensional precision matrix estimation, Modern Multivariate and Robust Methods. Springer, 2015
- P. Danaher, P. Wang, and D. Witten. The joint graphical lasso for inverse covariance estimation across multiple classes. *Journal of the Royal Statistical Society, Series B*, 76: 373–397, 2014.
- B. Price, C. Geyer, and A. Rothman. Ridge fusion in statistical learning. *Journal of Computational and Graphical Statistics*, 24(2):439–454, 2015.
- P. Rousseeuw and C. Croux. Alternatives to the median absolute deviation. *Journal* of the American Statistical Association, 88(424):1273–1283, 1993.
- G. Tarr, S. Müller, and N.C. Weber. Robust estimation of precision matrices under cellwise contamination. *Computational Statistics and Data Analysis*, 93:404–420, 2016.
- B. Xu, K. Huang, King I., C. Liu, J. Sun, and N. Satoshi. Graphical lasso quadratic discriminant function and its application to character recognition. *Neurocomputing*, 129: 33–40. 2014.