Article (Scientific journals)
Experimental validation of an electrical and thermal energy demand model for rapid assessment of rural health centers in sub-Saharan Africa
Orosz, Matthew; Altes-Buch, Queralt; Mueller, Amy et al.
2018In Applied Energy
Peer Reviewed verified by ORBi
 

Files


Full Text
MSO QAB - Author postprint.pdf
Author postprint (1.1 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Africa; Health center; Energy; Building energy model; Dynamic simulation; Probabilistic load forecasting
Abstract :
[en] Rapid deployment of health service infrastructure is underway to meet the growing needs of populations in subSaharan Africa, however the energy infrastructure needed to support high quality services has tended to lag. Understanding the electrical and thermal energy needs of health centers constructed with local building methods and materials and operating outside of the jurisdiction of heating, ventilation and air conditioning (HVAC) codes is complicated by a lack of appropriately scaled and configured energy system design frameworks and validation data for dynamic simulations. In this work we address this gap by linking the thermal envelope performance of health center buildings under heating and cooling loads with measured indoor air temperature, meteorological conditions, and operational electricity demand. A resistance-capacitive type energy balance model is parameterized using typical health center architectural data for sub-Saharan Africa (floor plans from Uganda and Lesotho) and heat transfer characteristics; to achieve this energy flows between HVAC equipment, internal loads, and ambient conditions are simulated on an hourly time step with indoor temperature thresholds representative of thermostat settings. A typical meteorological year dataset for Lesotho is used as a case study, validated with indoor temperature measurements and power metering at four health center sites spanning a daily patient load ranging from 15 to 450 per day over rural and urban communities. High resolution electricity measurements from smart meters installed at the clinics are used to close the energy balance and form the basis of a probabilistic method for forecasting long term hourly electricity demand in African health centers. These data and the corresponding method have relevance to energy system design for health clinics across sub-Saharan Africa, especially those featuring intermittent renewable generation. The integration of these two modeling approaches constitutes a novel tool for sizing and costing energy infrastructure to meet operational demand at health centers in both urban and rural areas of developing countries.
Disciplines :
Energy
Author, co-author :
Orosz, Matthew;  Massachusetts Institute of Technology - MIT
Altes-Buch, Queralt ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes de conversion d'énergie pour un dévelop.durable
Mueller, Amy;  Northeastern University, Boston, USA
Lemort, Vincent  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Systèmes énergétiques
Language :
English
Title :
Experimental validation of an electrical and thermal energy demand model for rapid assessment of rural health centers in sub-Saharan Africa
Publication date :
07 March 2018
Journal title :
Applied Energy
ISSN :
0306-2619
eISSN :
1872-9118
Publisher :
Elsevier, United Kingdom
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 24 July 2018

Statistics


Number of views
93 (11 by ULiège)
Number of downloads
181 (3 by ULiège)

Scopus citations®
 
9
Scopus citations®
without self-citations
9
OpenCitations
 
7

Bibliography


Similar publications



Contact ORBi