[en] he surface mass balance (SMB) of the Greenland Ice Sheet critically depend on the intensity of ice/snow melt in its ablation zone, but in‐situ data have been too limited to quantify the error of regional climate models. Here, we use 23 years of NASA satellite and airborne laser altimetry from the Airborne Topographic Mapper (ATM), Land, Vegetation and Ice Sensor (LVIS) and Ice, Cloud and land Elevation Satellite (ICESat) to generate time series of elevation change to compare with SMB products from the Regional Atmospheric Climate Model (RACMO2.3p2) and from the Modèle Atmosphérique Régional (MARv3.5.2). For 1994‐2016, the results agree at the 15‐26% level, with the largest discrepancy in north Greenland. During the cold summer 2015, the RMS discrepancy is 40% in the north, 30% in the southwest, and 18‐25% at low elevation. The difference drops to 23% in the southwest and 14% at low elevation during the 2016 warm summer.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Sutterley, T.
Velicogna, I.
Fettweis, Xavier ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
Rignot, E.
Noël, Brice ; Université de Liège - ULiège > Département de géographie > Climatologie et Topoclimatologie
van den Broeke, M.
Language :
English
Title :
Evaluation of reconstructions of snow/ice melt in Greenland by regional atmospheric climate models using laser altimetry data
Publication date :
17 July 2018
Journal title :
Geophysical Research Letters
ISSN :
0094-8276
eISSN :
1944-8007
Publisher :
Wiley-Blackwell, United States
Volume :
45
Pages :
8324–8333
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Abdalati, W., Zwally, H. J., Bindschadler, R., Csatho, B. M., Farrell, S. L., Fricker, H. A., et al. (2010). The ICESat-2 laser altimetry mission. Proceedings of the IEEE, 98, 735–751. https://doi.org/10.1109/JPROC.2009.2034765
A, G., Wahr, J., & Zhong, S. (2013). Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophysical Journal International, 192(2), 557–572. https://doi.org/10.1093/gji/ggs030
Altamimi, Z., Rebischung, P., Métivier, L., & Collilieux, X. (2016). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, 121, 6109–6131. https://doi.org/10.1002/2016JB013098
Bales, R. C., Guo, Q., Shen, D., McConnell, J. R., Du, G., Burkhart, J. F., et al. (2009). Annual accumulation for Greenland updated using ice core data developed during 2000–2006 and analysis of daily coastal meteorological data. Journal of Geophysical Research, 114, d06116. https://doi.org/10.1029/2008JD011208
Bamber, J. L., Griggs, J. A., Hurkmans, R. T. W. L., Dowdeswell, J. A., Gogineni, S. P., Howat, I. M., et al. (2013). A new bed elevation dataset for Greenland. The Cryosphere, 7, 499–510. https://doi.org/10.5194/tc-7-499-2013
Blair, J. B., & Hofton, M. (2010). IceBridge LVIS L2 geolocated surface elevation product. Boulder, CO: NASA DAAC at the National Snow and Ice Data Center. version 2
Blair, J. B., Rabine, D. L., & Hofton, M. A. (1999). The laser vegetation imaging sensor: A medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 115–122. https://doi.org/10.1016/S0924-2716(99)00002-7
Blunden, J., & Arndt, D. S. (2016). State of the climate in 2015. Bulletin of the American Meteorological Society, 97, 275. https://doi.org/10.1175/2016BAMSStateoftheClimate.1
Blunden, J., & Arndt, D. S. (2017). State of the climate in 2016. Bulletin of the American Meteorological Society, 98, 280. https://doi.org/10.1175/2017BAMSStateoftheClimate.1
Borsa, A. A., Moholdt, G., Fricker, H. A., & Brunt, K. M. (2014). A range correction for ICESat and its potential impact on ice-sheet mass balance studies. The Cryosphere, 8, 345–357. https://doi.org/10.5194/tc-8-345-2014
Brun, E., David, P., Sudul, M., & Brunot, G. (1992). A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting. Journal of Glaciology, 38(128), 13–22. https://doi.org/10.1017/S0022143000009552
Brunt, K. M., Hawley, R. L., Lutz, E. R., Studinger, M., Sonntag, J. G., Hofton, M. A., et al. (2017). Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland. The Cryosphere, 11, 681–692. https://doi.org/10.5194/tc-11-681-2017
Cogley, J. G. (2004). Greenland accumulation: An error model. Journal of Geophysical Research, 109, D18101. https://doi.org/10.1029/2003JD004449
Colgan, W., Box, J. E., Andersen, M. L., Fettweis, X., Csatho, B. M., Fausto, R. S., et al. (2015). Greenland high-elevation mass balance: Inference and implication of reference period (1961–90) imbalance. Annals of Glaciology, 56, 105–117. https://doi.org/10.3189/2015AoG70A967
De Ridder, K., & Gallée, H. (1998). Land surface-induced regional climate change in Southern Israel. Journal of Applied Meteorology, 37(11), 1470–1485. https://doi.org/10.1175/1520-0450(1998)037<1470:LSIRCC>2.0.CO;2
Ettema, J., van den Broeke, M. R., van Meijgaard, E., van de Berg, W. J., Bamber, J. L., Box, J. E., & Bales, R. C. (2009). Higher surface mass balance of the Greenland ice sheet revealed by high-resolution climate modeling. Geophysical Research Letters, 36, L12501. https://doi.org/10.1029/2009GL038110
Farrell, W. E. (1972). Deformation of the Earth by surface loads. Reviews of Geophysics, 10(3), 761–797. https://doi.org/10.1029/RG010i003p00761
Fettweis, X. (2007). Reconstruction of the 1979–2006 Greenland ice sheet surface mass balance using the regional climate model MAR. The Cryosphere, 1, 21–40. https://doi.org/10.5194/tc-1-21-2007
Fettweis, X., Box, J. E., Agosta, C., Amory, C., Kittel, C., Lang, C., et al. (2017). Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. The Cryosphere, 11, 1015–1033. https://doi.org/10.5194/tc-11-1015-2017
Franco, B., Fettweis, X., Lang, C., & Erpicum, M. (2012). Impact of spatial resolution on the modelling of the Greenland ice sheet surface mass balance between 1990–2010, using the regional climate model MAR. The Cryosphere, 6, 695–711. https://doi.org/10.5194/tc-6-695-2012
Gallée, H., & Schayes, G. (1994). Development of a three-dimensional Meso-γ primitive equation model: Katabatic winds simulation in the area of Terra Nova Bay, Antarctica. Monthly Weather Review, 122(4), 671–685. https://doi.org/10.1175/1520-0493(1994)122<0671:DOATDM>2.0.CO;2
Hofton, M. A., Blair, J. B., Luthcke, S. B., & Rabine, D. L. (2008). Assessing the performance of 20–25 m footprint waveform lidar data collected in ICESat data corridors in Greenland. Geophysical Research Letters, 35, L24501. https://doi.org/10.1029/2008GL035774
Howat, I. M., Negrete, A., & Smith, B. E. (2014). The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. The Cryosphere, 8, 1509–1518. https://doi.org/10.5194/tc-8-1509-2014
Howat, I. M., Smith, B. E., Joughin, I. R., & Scambos, T. A. (2008). Rates of Southeast Greenland ice volume loss from combined ICESat and ASTER observations. Geophysical Research Letters, 35, L17505. https://doi.org/10.1029/2008GL034496
Khan, S. A., Kjær, K. H., Bevis, M., Bamber, J. L., Wahr, J., Kjeldsen, K. K., et al. (2014). Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nature Climate Change, 4, 292–299. https://doi.org/10.1038/nclimate2161
Kjeldsen, K. K., Khan, S. A., Wahr, J., Korsgaard, N. J., Kjær, K. H., Bjørk, A. A., et al. (2013). Improved ice loss estimate of the northwestern Greenland ice sheet. Journal of Geophysical Research: Solid Earth, 118, 698–708. https://doi.org/10.1029/2012JB009684
Krabill, W. B. (2000). Greenland ice sheet: High-elevation balance and peripheral thinning. Science, 289(5478), 428–430. https://doi.org/10.1126/science.289.5478.428
Krabill, W. B., Frederick, E. B., Manizade, S. S., Martin, C. F., Sonntag, J. G., Swift, R. N., et al. (1999). Rapid thinning of parts of the southern Greenland ice sheet. Science, 283(5407), 1522–1524. https://doi.org/10.1126/science.283.5407.1522
Krabill, W. B., Hanna, E., Huybrechts, P., Abdalati, W., Cappelen, J., Csatho, B. M., et al. (2004). Greenland ice sheet: Increased coastal thinning. Geophysical Research Letters, 31, L24402. https://doi.org/10.1029/2004GL021533
Lenaerts, J. T. M., van den Broeke, M. R., van de Berg, W. J., van Meijgaard, E., & Kuipers Munneke, P. (2012). A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophysical Research Letters, 39, L04501. https://doi.org/10.1029/2011GL050713
Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., et al. (2017). The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sensing of Environment, 190, 260–273. https://doi.org/10.1016/j.rse.2016.12.029
Noël, B., van de Berg, W. J., Lhermitte, S., Wouters, B., Machguth, H., Howat, I., et al. (2017). A tipping point in refreezing accelerates mass loss of Greenland's glaciers and ice caps. Nature Communications, 8, 14730. https://doi.org/10.1038/ncomms14730
Noël, B., van de Berg, W. J., Machguth, H., Lhermitte, S., Howat, I. M., Fettweis, X., & van den Broeke, M. R. (2016). A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958–2015). The Cryosphere, 10, 2361–2377. https://doi.org/10.5194/tc-10-2361-2016
Noël, B., van de Berg, W. J., van Meijgaard, E., Kuipers Munneke, P., van de Wal, R. S. W., & van den Broeke, M. R. (2015). Evaluation of the updated regional climate model RACMO2.3: Summer snowfall impact on the Greenland ice sheet. The Cryosphere, 9, 1831–1844. https://doi.org/10.5194/tc-9-1831-2015
Noël, B., van de Berg, W. J., van Wessem, J. M., van Meijgaard, E., van As, D., Lenaerts, J. T. M., et al. (2017). Modelling the climate and surface mass balance of. The Cryosphere Discussions, 2017, 1–35. https://doi.org/10.5194/tc-2017-201
Pritchard, H. D., Arthern, R. J., Vaughan, D. G., & Edwards, L. A. (2009). Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature, 461, 971–975. https://doi.org/10.1038/nature08471
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R., & Padman, L. (2012). Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502–505. https://doi.org/10.1038/nature10968
Reeh, N. (2008). A nonsteady-state firn-densification model for the percolation zone of a glacier. Journal of Geophysical Research, 113, F03023. https://doi.org/10.1029/2007JF000746
Rignot, E. J., Box, J. E., Burgess, E. W., & Hanna, E. (2008). Mass balance of the Greenland ice sheet from 1958 to 2007. Geophysical Research Letters, 35, L20502. https://doi.org/10.1029/2008GL035417
Rignot, E. J., Jacobs, S., Mouginot, J., & Scheuchl, B. (2013). Ice-shelf melting around Antarctica. Science, 341, 266–270. https://doi.org/10.1126/science.1235798
Rignot, E. J., & Mouginot, J. (2012). Ice flow in Greenland for the international polar year 2008–2009. Geophysical Research Letters, 39, L11501. https://doi.org/10.1029/2012GL051634
Schenk, T., & Csatho, B. M. (2012). A new methodology for detecting ice sheet surface elevation changes from laser altimetry data. IEEE Transactions on Geoscience and Remote Sensing, 50, 3302–3316. https://doi.org/10.1109/TGRS.2011.2182357
Shepherd, A., Ivins, E. R., Barletta, G. A, Bentley, M. J., Bettadpur, S., Briggs, K. H., et al. (2012). A reconciled estimate of ice-sheet mass balance. Science, 338, 1183–1189. https://doi.org/10.1126/science.1228102
Simpson, M. J. R., Milne, G. A., Huybrechts, P., & Long, A. J. (2009). Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent. Quaternary Science Reviews, 28, 1631–1657. https://doi.org/10.1016/j.quascirev.2009.03.004
Smith, B. E., Fricker, H. A., Joughin, I. R., & Tulaczyk, S. (2009). An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). Journal of Glaciology, 55, 573–595. https://doi.org/10.3189/002214309789470879
Sørensen, L. S., Simonsen, S. B., Nielsen, K., Lucas-Picher, P., Spada, G., Aðalgeirsdottir, G., et al. (2011). Mass balance of the Greenland ice sheet (2003–2008) from ICESat data—The impact of interpolation, sampling and firn density. The Cryosphere, 5, 173–186. https://doi.org/10.5194/tc-5-173-2011
Studinger, M. S. (2013). IceBridge ATM L1B elevation and return strength. Boulder, CO: NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/19SIM5TXKPGT version 2
Studinger, M. S. (2014a). IceBridge ATM L2 Icessn elevation, slope, and roughness. Boulder, CO: NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/CPRXXK3F39RV version 2
Studinger, M. S. (2014b). IceBridge ATM L4 surface elevation rate of change. Boulder, CO: NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/BCW6CI3TXOCY version 1
Tedesco, M., & Fettweis, X. (2012). 21st century projections of surface mass balance changes for major drainage systems of the Greenland ice sheet. Environmental Research Letters, 7, 045405. https://doi.org/10.1088/1748-9326/7/4/045405
Tedesco, M., Mote, T., Fettweis, X., Hanna, E., Jeyaratnam, J., & Booth, J. F. (2016). Arctic cut-off high drives the poleward shift of a new Greenland melting record. Nature Communications, 7, 11723. https://doi.org/10.1038/ncomms11723
Thomas, R. H., & Studinger, M. S. (2010). Pre-IceBridge ATM L2 Icessn elevation, slope, and roughness. Boulder, CO: NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/6C6WA3R918HJ version 1
Unden, P., Rontu, L., Järvinen, H., Lynch, P., Calvo, J., Cats, G., et al. (2002). HIRLAM-5 scientific documentation. S-601 76 Norrköping, Sweden: Swedish Meteorological and Hydrological Institute (SMHI)
van de Wal, R. S. W., Boot, W., Smeets, C. J. P. P., Snellen, H., van den Broeke, M. R., & Oerlemans, J. (2012). Twenty-one years of mass balance observations along the K-transect, West Greenland. Earth System Science Data, 4, 31–35. https://doi.org/10.5194/essd-4-31-2012
van den Broeke, M. R., Bamber, J. L., Ettema, J., Rignot, E. J., Schrama, E., & van de Berg, W. J. (2009). Partitioning recent Greenland mass loss. Science, 326, 984–986. https://doi.org/10.1126/science.1178176
van den Broeke, M., Box, J., Fettweis, X., Hanna, E., Noël, B., Tedesco, M., et al. (2017). Greenland ice sheet surface mass loss: Recent developments in observation and modeling. Current Climate Change Reports, 3, 345–356. https://doi.org/10.1007/s40641-017-0084-8
van den Broeke, M. R., Enderlin, E. M., Howat, I. M., Kuipers Munneke, P., Noël, B. P. Y., van de Berg, W. J., et al. (2016). On the recent contribution of the Greenland ice sheet to sea level change. The Cryosphere, 10, 1933–1946. https://doi.org/10.5194/tc-10-1933-2016
Velicogna, I. (2009). Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters, 36, L19503. https://doi.org/10.1029/2009GL040222
Velicogna, I., Sutterley, T. C., & van den Broeke, M. R. (2014). Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophysical Research Letters, 41, 8130–8137. https://doi.org/10.1002/2014GL061052
Vernon, C. L., Bamber, L., Box, J. E., van denBroeke, M. R., Fettweis, X., Hanna, E., & Huybrechts, P. (2013). Surface mass balance model intercomparison for the Greenland ice sheet. The Cryosphere, 7, 599–614. https://doi.org/10.5194/tc-7-599-2013
Wahr, J., Wingham, D., & Bentley, C. (2000). A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balance. Journal of Geophysical Research, 105(B7), 16,279–16,294. https://doi.org/10.1029/2000JB900113
White, P. W. (2002). Part IV: Physical processes (CY23R4). RG2 9AX, England: European Centre for Medium-Range Weather Forecasts (ECMWF), Shinfield Park, Reading
Wilton, D. J., Jowett, A., Hanna, E., Bigg, G. R., van den Broeke, M. R., Fettweis, X., & Huybrechts, P. (2017). High resolution (1 km) positive degree-day modelling of Greenland ice sheet surface mass balance, 1870–2012 using reanalysis data. Journal of Glaciology, 63, 176–193. https://doi.org/10.1017/jog.2016.133
Zwally, H. J., Schutz, R., Hancock, D., & Dimarzio, J. (2014). GLAS/ICESat L2 Antarctic and Greenland ice sheet altimetry data (HDF5). Boulder, CO: NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/ICESAT/GLAS/DATA205 GLA 12 Version 34