Reference : Comparison of stochastic and interval methods for uncertainty quantification of metal...
Scientific journals : Article
Engineering, computing & technology : Mechanical engineering
http://hdl.handle.net/2268/226635
Comparison of stochastic and interval methods for uncertainty quantification of metal forming processes
English
Arnst, Maarten mailto [Université de Liège - ULiège > Département d'aérospatiale et mécanique > Computational and stochastic modeling >]
Ponthot, Jean-Philippe mailto [Université de Liège - ULiège > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire >]
Boman, Romain mailto [Université de Liège - ULiège > Département d'aérospatiale et mécanique > Département d'aérospatiale et mécanique >]
Aug-2018
Comptes Rendus Mécanique
Elsevier Masson
346
8
Computational modeling of material forming processes
634-646
Yes (verified by ORBi)
International
1631-0721
Paris
France
[en] Metal forming ; Uncertainty quantification ; Stochastic methods ; Interval methods ; Sensitivity analysis ; Parameter study
[en] Various sources of uncertainty can arise in metal forming processes, or their numerical simulation, or both, such as uncertainty in material behavior, process conditions, and geometry. Methods from the domain of uncertainty quantification can help assess the impact of such uncertainty on metal forming processes and their numerical simulation, and they can thus help improve robustness and predictive accuracy. In this paper, we compare stochastic methods and interval methods, two classes of methods receiving broad attention in the domain of uncertainty quantification, through their application to a numerical simulation of a sheet metal forming process.
http://hdl.handle.net/2268/226635
10.1016/j.crme.2018.06.007

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
online.pdfPublisher postprint535.46 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.